Group Messaging for Secure Asynchronous
Collaboration

Matthew A. Weidner
Churchill College

B

Il

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of
Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory
William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD
UNITED KINGDOM

Email: malw2Qcl.cam.ac.uk

June 6, 2019






Declaration of originality

I, Matthew A. Weidner of Churchill College, being a candidate for the M.Phil in Advanced
Computer Science, hereby declare that this report and the work described in it are my
own work, unaided except as may be specified below, and that the report does not contain
material that has already been used to any substantial extent for a comparable purpose.

The word count excludes appendices.

Signed:

Date:

This dissertation is copyright (©2019 Matthew A. Weidner.

All trademarks used in this dissertation are hereby acknowledged.






Acknowledgements

I would like to thank my supervisors, Dr. Alastair Beresford and Dr. Martin Kleppmann,
for their time and valuable input on this project throughout the year, including feedback
on multiple drafts of this dissertation. I also thank Michael Dodson for providing feedback
on a draft of Chapter 4. I was supported by a Churchill Scholarship from the Winston
Churchill Foundation of the USA.






Group Messaging for Secure Asynchronous
Collaboration

Abstract

End-to-end encrypted applications improve users’ privacy by making their data unread-
able to anyone besides their intended recipients. In particular, their data is unreadable
to application servers. Although end-to-end encryption is currently deployed only for
messaging apps, recent academic work shows that it is possible to create end-to-end en-
crypted asynchronous collaborative applications, like Google Docs but without a trusted
server, by layering Conflict-free Replicated Data Types (CRDTS) on top of a secure group
messaging protocol. However, existing secure group messaging protocols are inadequate
for CRDT-based collaboration, and they do not minimize the trusted computing base as
much as possible.

This dissertation investigates secure group messaging for the purpose of supporting end-
to-end encrypted asynchronous collaborative applications. Its research contributions
are threefold: a novel taxonomy of existing secure group messaging protocols; Causal
TreeKEM, a new protocol for managing shared encryption keys that provides strong
security guarantees while supporting asynchronous group messaging without a central
server; and the design of a secure group messaging protocol meeting the requirements of
CRDT-based collaboration. The taxonomy improves on previous work surveying secure
group messaging by dividing protocols into largely interchangeable parts instead of eval-
uating whole protocols, allowing one to easily create new protocols by combining parts.
Causal TreeKEM improves on TreeKEM, a recent protocol, by eliminating the need for a
linear order on state changes, such as adding or removing users. Finally, the secure group
messaging protocol is unique in that it delivers messages in a consistent causal order to all
users even in the face of malicious servers or group members, supports dynamic groups,
and does not require a single central server.

In total, this dissertation represents an important step towards developing end-to-end
encrypted asynchronous collaborative applications with a minimal trusted computing
base.
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Chapter 1
Introduction

End-to-end encryption is becoming the de-facto standard for messaging apps. WhatsApp!
is a prominent example, with billions of users. End-to-end encryption improves users’
privacy by making messages unreadable to anyone besides their intended recipients. In
particular, messages are unreadable to the messaging server. This reduces the trusted
computing base and protects against the possibility that the server may be compromised,
for instance by rogue employees, hackers, or surveillance agencies. Real-world events
show that server compromises are a legitimate threat, including the NSA’s mass access
to Internet companies’ data through PRISM [1] and evidence of inappropriate employee

access to data at Facebook [2] and Snap [3].

End-to-end encryption has not yet spread to applications besides direct messaging. In
particular, collaborative applications, in which a group of users work together on a docu-
ment without a need for manual conflict resolution, are not end-to-end encrypted. These
applications are growing in importance; for example, Google Drive, which includes the
Google Docs suite of collaborative applications, has nearly one billion users [4]. Adding
end-to-end encryption to an application like Google Docs at first appears difficult, since

the central server plays a key role in resolving conflicts between different users’ edits.

However, recent academic work shows that collaborative applications can be implemented
without the need for a server to mediate conflicts between users. In particular, Conflict-
free Replicated Data Types (CRDTs) [5, 6] can be used to replicate a mutable data
structure across a group of users, with the guarantee that all users see the same state
once they have received the same set of updates, regardless of the order in which they
received those updates. Thus only users need to read and process updates, not a central

server, so that the updates and hence the shared state can be end-to-end encrypted.

In principle, it then becomes possible to build end-to-end encrypted asynchronous col-

'https://wuw.whatsapp.com/



laborative applications by layering CRDTs on top of a secure group messaging protocol,
as described by Kleppmann et al. [7]. Here the secure group messaging protocol is re-
sponsible for broadcasting CRDT updates to the group of collaborators, so that they can
maintain a shared state consisting of a monotonically growing set of updates. Each user’s
application then combines their set of updates to compute a shared document state. So
long as the messaging protocol is secure, in that only collaborators can decrypt messages,

the document state will be known only to collaborators.

However, existing secure group messaging protocols are inadequate for CRDT-based col-
laboration. For example, the protocols in deployed messaging apps do not include infor-
mation about the causal order on messages, i.e., which messages a user received before
authoring a particular message, while CRDT's require consistent causal ordering informa-
tion. As another example, deployed messaging apps require all messages to pass through
a central server. This rules out other desirable forms of communication, such as direct
peer-to-peer connections, which enable use cases like LAN-local collaboration. Finally,
while deployed messaging apps guarantee the confidentiality of messages even if the server
acts maliciously, they do not guarantee other properties, like the property that all users
see a consistent set of messages. It is desirable to minimize this trusted computing base,
so that users can continue collaborating if servers or even other group members behave

maliciously.

This dissertation investigates secure group messaging for the purpose of supporting end-
to-end encrypted asynchronous collaborative applications. It does so by surveying and
synthesizing existing work on secure group messaging, as well as by designing new proto-
cols to solve problems unique to collaborative applications. Ultimately, this dissertation
develops the theoretical foundation of a group messaging protocol for secure asynchronous

collaboration with a minimal trusted computing base.

1.1 Contributions

I have made three main research contributions, divided into Chapters 3—5. The contribu-
tions all concern secure group messaging, specifically, how a group of users, identified by
their public keys, have a conversation with various security properties. Note that this ex-
cludes trust establishment—how users learn each other’s public keys and associate them
with real-world identities. While trust establishment is an important part of deployed
applications, with many existing protocols (see [8, §IV] for a survey), it is orthogonal to

secure group messaging as defined here, and I consider it out of scope.

As my first contribution, I developed a taxonomy of existing secure group messaging pro-

tocols, presented in Chapter 3. I did this by dividing existing protocols into largely



interchangeable parts that address different aspects of secure group messaging, then
formulating properties that protocols for those parts may or not have and evaluating
protocols with respect to those properties. In comparison to existing surveys of group
messaging that evaluate protocols holistically, such as by Unger et al. [§], my taxonomy
is more expressive: dividing protocols into parts with specific functions highlights more
clearly what is currently possible and what may be good topics for future work, and new
protocols can easily be designed at a high-level by combining parts from different existing

works.

Based on this taxonomy, I identified a gap in the space of protocols for managing shared
encryption keys in a group. I then filled this gap by creating a new protocol, Causal
TreeKEM, which is the subject of Chapter 4. Causal TreeKEM lets a group of users
efficiently share a group key while allowing users to be added or removed, and it achieves
a strong security property called post-compromise security. In contrast to TreeKEM, an
existing protocol on which it is based, Causal TreeKEM does not require a linear order
on state changes, such as adding or removing users. This is necessary for asynchronous

group messaging protocols without a trusted central server.

Finally, I designed a secure group messaging protocol meeting the requirements of CRDT-
based collaboration, described in Chapter 5. The protocol combines Causal TreeKEM
with other protocols identified in my taxonomy. Unlike any existing protocol, it delivers
messages in a consistent causal order to all users even in the face of malicious servers or

group members, supports dynamic groups, and does not require a single central server.






Chapter 2
Secure Two-party Messaging

In this chapter, we briefly describe the simpler case of secure two-party messaging. We
also highlight the difficulties of moving to secure group messaging. Along the way, we
introduce cryptographic concepts that serve as background for the later chapters. Our
definitions follow Unger et al. [8, §V].

The fundamental goal of two-party secure messaging is to enable two users to have a secure
conversation. Security in this context has multiple parts. Confidentiality is the property
that only the two participants can compute the plaintexts of messages. Integrity is the
property that only the two participants can send messages, i.e., the participants will reject
messages that have been sent or tampered with by an outsider. Authentication is the
property that the two participants agree on each other’s identities, typically represented

by public keys.

These properties are typically measured against an active network adversary, which can
read and store all communications between the parties, send forged messages, and start
parallel secure conversations, subject to realistic limits on its computational power. In

the context of end-to-end encryption, servers are potentially active network adversaries.

Asymmetric encryption, as in PGP, achieves the above properties against an active net-
work adversary. However, it does not achieve the advanced security properties of forward
secrecy and post-compromise security, which are measured against an adversary who can

also compromise users, learning all of their secret keys at a given point in time.

Forward secrecy is the property that an active network adversary who compromises some
or all users should not be able to decrypt messages from before the compromise. Forward
secrecy at the granularity of whole conversations can be achieved together with the above
properties by using an authenticated Diffie-Hellman exchange to establish an ephemeral
(short-lived) and fresh (not previously used) shared key for each conversation, then en-

crypting messages under the key using an Authenticated Encryption with Associated



Data (AEAD) scheme [9], as in TLS-DHE [10]. Forward secrecy at the granularity of
individual messages can be achieved by additionally using deterministic key ratcheting,
introduced by SCIMP [11]. In this approach, users encrypt every message with a unique
key, derived from some shared key using a chain of hash function applications, and delete

keys immediately after use.

Post-compromise security, also called backwards secrecy or self-healing, is the property
that an active network adversary who temporarily compromises some or all users should
not be able to decrypt messages indefinitely after the compromise is healed. This is
useful in case an adversary temporarily accesses a device and makes a copy of its state,
for example through malware or a physical inspection, but then loses access to the device.
Post-compromise security can be achieved by continually refreshing the ephemeral shared

key using new Diffie-Hellman exchanges, a technique introduced by OTR [12].

All of the above properties are achieved by the two-party Signal protocol [13, 14], which
is used for two-party conversations in Signal' and WhatsApp. The Signal protocol is
asynchronous in that users can send messages when the other user is offline, using a
store-and-forward server to buffer messages. This is true even for the first message in a
conversation: by downloading another user’s prekey from an untrusted server, a user can
establish an authenticated ephemeral shared key with no communication. Here a prekey
is the first message of an authenticated Diffie-Hellman exchange; each user uploads a
number of prekeys to an untrusted server in advance, so that other users can later use
them to complete the Diffie-Hellman exchange and start a conversation immediately. The
Signal protocol also achieves the property of deniability, which roughly states that one

user cannot cryptographically prove that the other user sent any particular message.

2.1 From Two Parties to a Group

Moving from the two-party setting to arbitrary size groups introduces new challenges.
A simple approach to achieve the above security properties is for users to send group
messages over separate Signal protocol channels to each user, as in Signal group chats
[15]; however, this is inefficient, since the sender must encrypt and send each message
once per group member. Achieving properties like post-compromise security while still

allowing message broadcast is a nontrivial challenge.

Additionally, moving to the group setting adds new desirable security properties. Au-
thor authentication is the property that users can verify who sent a particular message.

Integrity and authentication imply that users always know that some intended group

'https://signal.org/



member sent a message, but unlike in the two-party case, they do not know which group
member it was, except that it was someone besides themselves. Consistency is the prop-
erty that all users agree on what is happening in the group. This includes participant
consistency, in which all users agree on the set of group members, and transcript con-
sistency, in which all users agree on the set of messages sent so far and their ordering.
Note that the adversaries for these properties may include malicious group members, who
may try to forge message authors or break other users’ consistency, in addition to active

network adversaries, possibly including servers.

Ordering messages is also more difficult in the group setting. Typically, messaging appli-
cations display messages in a linear order. However, when there are more than two users,
it is difficult to enforce a consistent linear ordering without a central server, and not all
applications require a linear ordering. Thus we also consider two weaker orderings. The
causal order is the partial order in which m precedes m’ if the author of m received and
processed m before sending m’. This includes the case that m and m' have the same
author and m was sent before m’. The causal order is precisely what CRDTSs require: to
establish a consistent shared state, all users must receive messages in a consistent causal
order, but they need not receive messages in the same linear order [5]. We also define the
per-sender order as the partial order in which m precedes m’ if m and m’ have the same

author and the author sent m before m/'.






Chapter 3

Taxonomy of Secure Group

Messaging Protocols

Many secure group messaging protocols already exist, both in the academic literature
and in deployment. In this chapter, we survey existing protocols and organize them into

a novel taxonomy.

As a starting point, we take Unger et al.’s discussion of secure group messaging protocols
from 2015 [8]. Unger et al. give a comprehensive survey of secure messaging gener-
ally, reviewing academic and deployed protocols for trust establishment (verifying user
identities), conversation security (the actions users take to communicate), and transport
privacy (how the network layer delivers packets). Their survey includes definitions of
various desirable security properties and large tables assessing existing protocols with
respect to those properties. Secure group messaging protocols appear as a subset of their

survey of conversation security protocols.

One downside to Unger et al.’s discussion is that they evaluate existing protocols as whole
secure group messaging protocols. This disadvantages many works, which often focus on
only one aspect of group messaging and ignore other aspects or implement them naively.
Thus, as Unger et al. note, there is much to be gained by combining parts of different
protocols. In addition, many existing protocols can be tweaked to add features or to

cover use cases not considered by the original authors.

In this chapter, we aim to give a more complete picture of the secure group messaging
landscape, by breaking down existing protocols into largely interchangeable parts. One
can build a complete protocol by choosing their desired implementation of each part. For
each part, we define a list of security and functional properties, in the style of Unger et al.
We then present protocols from the literature, plus some extensions to these protocols,

and evaluate them with respect to the properties. Finally, we present flowcharts for



each part which include a series of questions about desired properties, ending with an
optimal protocol part achieving those properties. This taxonomy should prove useful
both to implementers of secure group messaging protocols and to researchers interested

in designing new protocol parts.

3.1 Architecture

We adopt the high-level architecture shown in Figure 3.1. This is not the only way
to create a secure group messaging protocol, but surveying the literature shows that it

encompasses most reasonable protocols.
The parts are:

Messaging How are messages broadcast to the group? This involves choices like whether
to use broadcast or pairwise channels, and whether there are servers to buffer mes-

sages.

Encryption key management How do users agree on symmetric keys that are used
to ensure confidentiality and integrity? Note that these keys may change over time.
This part includes users’ authentication of other group members, so that they know
who else shares the symmetric keys, but not authentication of individual messages’
authors, which is handled by the next part. We assume all users know each others’

long-term public signature keys through some trust establishment protocol.

Author authentication How do users prove to other users that they authored a par-
ticular message? A simple protocol for this part is to sign each message with the
sender’s long-term signature key; however, more complicated protocols exist which

provide deniability.

Transcript consistency How do users ensure that they have consistent views of the
conversation transcript? Note that depending on application requirements, users

need not necessarily agree on the order of messages in the transcript.

3.2 Messaging

The messaging part provides the core functionality of a secure group messaging protocol:
delivering messages that users send to the group. There are a number of ways to do
this, but they differ mainly in network infrastructure or efficiency considerations, not
security properties. For this reason, we discuss protocols for the messaging part only

briefly, omitting systematic lists of properties and protocols.

10
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Figure 3.1: High-level architecture for secure group messaging protocols. Note that
the encryption key management part functions by setting encryption keys used by the
AEAD scheme, and the author authentication part may (but need not) function by setting
signature keys used for message signing and/or by the transcript consistency part.

A typical protocol for the messaging part is to use a store-and-forward server to which
users occasionally connect using TCP. When sending a message, a user can either give the
server one copy which the server delivers to all other group members, as in WhatsApp, or
they can give the server a separate direct message to deliver to each other group member,
as in Signal. Alternatively, users can send messages directly over the network. If users are
not always all online, they can use a gossip protocol (also called an epidemic algorithm)
[16], in which pairs of users occasionally connect and synchronize their message sets
over direct peer-to-peer connections. Gossip protocols are commonly used in distributed

databases, such as Depot [17]; KleeQ [18] describes one for group messaging specifically.

3.3 Encryption Key Management

Encrypting messages to ensure confidentiality and integrity, so that only group members
can read or generate messages, is the main characteristic distinguishing secure group
messaging from ordinary group messaging. We now discuss how users manage encryption

keys, i.e., how they negotiate, authenticate, and change them.

We assume that all users know each other’s long-term public signature keys. Distributing
and verifying these public keys is itself a difficult problem called trust establishment, but

we regard it as out-of-scope; see Unger et al. [8, §IV] for a survey of approaches.
We discuss several aspects of encryption key management:

Encryption key type What type of encryption keys are used? E.g., is there a single
key shared by all group members, a shared key between each pair of users, or

something else?

Key negotiation How do users negotiate keys of the desired type while also authenti-

cating the other group members? A large number of key negotiation protocols exist

11



in the literature, going under the names group key agreement or conference key

agreement; Boyd and Mathuria [19, Chapter 6] give a somewhat outdated survey.

To simplify our discussion, we choose only one key negotiation protocol for each
encryption key type. Our choices are all optimized for the asynchronous setting.
Specifically, we choose protocols in which users can start encrypting messages to the
group immediately after creating the group or receiving a group creation message,
without having to wait for round-trips with other users. Such protocols necessarily
use prekeys. Also, where possible, we choose protocols that are used in existing

asynchronous secure group messaging protocols.

State changes How do users change their keys at a point in time after key negotiation?
We consider three kinds of state changes: adding users, removing users, and key
refreshing. Changing keys is necessary when adding or removing users because
removed users should no longer be able to decrypt messages, and added users should
not be able to decrypt messages from before they were added. Key refreshing is the
mechanism used to achieve post-compromise security. Also, when different users
are assigned different keys for encrypting their own messages, key refreshing before
every message is needed to achieve the property message unlinkability preserving—
the protocol does not produce cryptographic proof that any two messages were
sent by the same user. Key refreshing is used for this purpose in GOTR [20] and
SYM-GOTR [21].

Deterministic key ratcheting Deterministic key ratcheting provides forward secrecy
at low cost. The basic idea is to deterministically derive new encryption keys for
each message, using a chain of key derivation function applications. After sending or
receiving a message, a user can delete the corresponding key, which is only used once.
Thus an adversary who later compromises that user cannot decrypt the message.
A version of deterministic key ratcheting that supports out-of-order messages was
originally designed for the two-party Signal protocol [13, §2.2]. WhatsApp uses it
in the broadcast group setting [22, 15].

When used with aggressive key deletion, deterministic key ratcheting has the down-
side that malicious users can violate transcript consistency: if a user maliciously
sends multiple messages encrypted under the same key, then each other user will
only be able to decrypt one of the messages, and different users may decrypt dif-

ferent messages.

Participant consistency This is the property that all users agree on the set of group
members. In general, this can be ensured by including group membership informa-
tion in shared key derivation, like in MLS [23, §5.9], and by using authenticated

pairwise channels during key negotiation.

12



3.3.1 Properties

We evaluate encryption key types and key negotiation protocols with respect to the

properties listed below. We separate properties of encryption key types from properties

of key negotiation protocols to emphasize that there may be multiple key negotiation

protocols for a given encryption key type, even though Table 3.1 only evaluates one for

each type.

The properties for encryption key types, including state changes but excluding negotia-

tion, are as follows.

Allows message broadcast Plaintexts need only be encrypted under one key before being

State

State

State

broadcast to the group. If this is false, the sender must instead encrypt the plaintext
under a separate key for each other user, and then either send different messages
to each user, or broadcast a single ciphertext together with its key encrypted under
one key for each other user, as in Mobile CoWPT [24].

change malicious user tolerance (group) For the protocol to function correctly, users
must agree on some shared state, such as the value of shared group keys. However,
for some encryption key types, a malicious user may initiate a state change (de-
scribed above) that causes other users’ states to diverge, causing a denial-of-service
attack because the victims can no longer decrypt each others” messages. If such an

attack is impossible, we give the protocol this property.

change malicious user tolerance (sender) This is a weaker version of the above prop-
erty in which for any honest user A, all users agree on the shared keys that A uses
to encrypt messages, but they may disagree on the keys used by malicious users.
The sender keys protocol, in which each user distributes their own sender key and
uses that to encrypt messages, fulfils this property but not the previous one, since
malicious users can send different versions of their own sender key to different users,

but they cannot affect other users’ sender keys.

change ordering requirement The order in which users must generate and process
state changes. For example, if this ordering is “Linear”, there can only be a single
sequence of state changes 1,2, ..., and the user initiating state change n + 1 must

have already processed state change n.

Key refreshing cost The broadcast communication cost of performing key refreshing for

a single user. If only the refreshing user sends data, we state their communication
cost; if instead key refreshing requires every user to send data, we state the cost per
user and write “/user”. If the protocol sends the same O(1)-size message to every

user over pairwise Signal protocol channels, we count it as an O(n)-size broadcast.

13



Add user cost Same as key refreshing cost, but for adding a user. We exclude the cost
of sending non-cryptographic group information to the added user (at least O(n)
to send the list of group members), as well as the broadcast cost of informing the

group that a user is being added.
Remowve user cost Same as add user cost, but for removing a user.
The properties for key negotiation protocols are as follows.

Malicious user tolerance (group/sender) Same as state change malicious user tolerance
(group/sender), but it applies only to the initial key negotiation, not to later state

changes.

Negotiation cost Same as key refreshing cost, but for the negotiation. We exclude the
O(n) cost of sending the list of group members and other non-cryptographic infor-

mation.

3.3.2 Protocols

Table 3.1 evaluates protocols with respect to the above properties, with one choice of key
negotiation protocol for each encryption key management protocol. Figure 3.2 presents
the results in flowchart form, giving an algorithm that a group messaging protocol designer

can use to select an encryption key management protocol given their requirements.

We now describe the evaluated protocols in detail.

Plain shared key This is a classic case considered by many key negotiation protocols

in the literature.
Keys: The shared key material consists only of a single shared key.

Negotiation: The group creator generates a fresh key and sends it to each other group
member over a pairwise Signal protocol channel (see Chapter 2). This is an example of

a key transport protocol.

State changes: To refresh keys or remove users, the initiating user restarts the group with
a fresh shared key, using the pairwise channels. To add a user, the adder generates a
new shared key, broadcasts it to the group encrypted under the existing shared key, and

sends it to the added user over a new pairwise channel.

Pairwise channels This key type is used by Signal [15], which also uses the negotiation

and key refreshing protocols described here.

14
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Allow message broadcast?

Efficient state changes
OR
no linear
ordering requirement?

(Pairwise channels)

No linear requirement \Efficient

Malicious user
tolerance (sender)
OR
efficient negotiation?

[Asymrnetric key treeD

Malicious user tolerance \Efficient

Sender keys [Plain shared keyj

Figure 3.2: A flowchart of encryption key types, leading from desired properties to a
protocol meeting those properties.
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Keys: The shared key material consists of a shared key between each pair of users.
Negotiation: Each user creates a pairwise Signal protocol channel with every other user.

State changes: To refresh keys, a user refreshes the keys for each of their pairwise channels.
To add a user, all other users create a pairwise Signal protocol channel with the added

user. To remove a user, the remaining users stop sending messages to them.

Sender keys This key type is used by WhatsApp [22, 15], which also uses the ne-
gotiation and state change protocols described here, except that key refreshing is not

used.

Keys: The shared key material consists of one sender key per user, known to all users

but used to encrypt messages sent by that user only.

Negotiation: Before sending their first message, a user generates a fresh sender key and

sends it to each other group member over a pairwise Signal protocol channel.

State changes: To refresh keys or remove users, every user (not just the refreshing user)
restarts the group with a fresh sender key. To add a user, every user uses a new pairwise
channel to send the added user their next message encryption key, from which the added

user can compute all future message encryption keys via deterministic key ratcheting.

Asymmetric key tree A specific version of this key type, a Diffie-Hellman tree, was
first described by Steer et al. [25]. Kim et al. later discussed how to handle dynamic groups
in the synchronous setting [26]. Recently, Cohn-Gordon et al. proposed Asynchronous
Ratcheting Tree (ART), a variant that permits asynchronous key refreshing [27]. ART
was the first efficient and asynchronous post-compromise secure group key agreement
protocol. ART’s core ideas have since been developed into TreeKEM, which has better
support for dynamic groups. TreeKEM forms the core of the Messaging Layer Security
(MLS) draft IETF standard [23], and it is the source of the negotiation and state change

protocols described below.

Keys: Users arrange themselves as the leaves of a rooted left-balanced binary tree. Each
node of the tree, including the leaves but excepting the root, is labelled with an asym-
metric key pair, with the private key known to all users below the node and the public
key known to all users. The root is labelled with a symmetric key known to all users,
which is used like a plain shared key. As a convenience when adding or removing users,

some nodes may be blank, in which case they effectively function as the set containing
their child keys.

Negotiation: The key tree starts out containing the initiator only. The initiator then adds
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the other users one at a time. This results in a key tree that is all blank except for the
root and the leaves; the root is labelled with a key shared by all group members, while
each user’s leaf is labelled with an asymmetric key pair for which they alone know the
private key. Over time, users perform key refreshings, eventually filling the key tree with
non-blank values. The cost of initially adding the users is O(n), while the key refreshings
that fill the tree have a total cost of O(nlog(n)).

State changes: State changes adjust the tree structure to add or remove users. They also
adjust keys on the path from the initiator to the root. We give a precise description of

these state changes in the next chapter (Section 4.1).

3.4 Author Authentication

Unlike in the two-party case, in the secure group communication setting, message authors
are ambiguous. In all of the protocols in Section 3.3 except pairwise channels, messages
are sent encrypted and authenticated (e.g., with a Message Authentication Code (MAC))
under a symmetric key known to all group members. Thus a receiver knows that a
message was authored by some group member besides themselves, but not which one.
In this section, we discuss protocols for authenticating message authors. Note that the
adversary here is a malicious insider, i.e., another group member who wishes to lie about
a message’s authorship. This is in contrast to most discussions of secure communication,

in which group members are trusted and the only adversary is a malicious outsider.

A simple approach to author authentication is to use long-term signature keys to sign ev-
ery message. However, this loses all deniability properties, motivating the other protocols

below.

3.4.1 Properties

We evaluate protocols with respect to the following properties.
Authenticates authors The protocol allows users to verify message authors.

Unforgeable Malicious users cannot forge message identities even temporarily. A protocol
can lack this property but still authenticate authors if users validate a message’s
author through a transcript consistency check after receiving the message. Users can
either wait to display messages until their author is confirmed or display messages

immediately and report an error if they are later found to be incorrect.

Deniability preserving Users cannot cryptographically prove to an outsider that another
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user authored a particular message. It may still be possible to prove that another
user participated in the conversation’s initial key negotiation. Note that deniability
properties, such as this one and message unlinkability, are subtle and depend on the
precise interactions between all protocol parts, and so these part-specific properties

should be taken as guidelines only.

Message unlinkability preserving The protocol does not produce cryptographic proof that
any two messages were sent by the same user. A protocol partially fulfils this

property if some but not all messages may be cryptographically linked.

Malicious user tolerant keys For protocols that use signature keys, any subset of hon-
est users agree on the signature keys of all other users, even if other users act
maliciously. If this does not hold, then malicious users can give different public
signature keys to different users. This does not allow them to forge authorship by
honest users, but it allows them to send messages that only some subset of users
consider valid. (One can use a transcript consistency protocol to ensure this prop-
erty so long as the protocol is signature-free. That approach is used by mpOTR
28] but not by WhatsApp [22].)

Partition tolerant Any subset of users in a reliable network can authenticate message

authors.

Asynchronous Users do not need to communicate with other users before accepting a

message’s author.

Cost The communication cost of the protocol compared to no author authentication. We
do not include costs that are already accounted for by protocol parts listed in the

restrictions property.

Restrictions Choices for other parts that must be used with this protocol.

3.4.2 Protocols

Table 3.2 evaluates protocols with respect to the above properties. Figure 3.3 presents the
results in flowchart form, giving an algorithm that a group messaging protocol designer

can use to select an author authentication protocol given their requirements.
We now describe the evaluated protocols in detail.

A baseline approach is to use a trusted server to authenticate users and indicate message
authors. Another baseline approach is for users to sign messages with their long-term

signature keys. However, this precludes deniability.
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No author authentication - - @ [ ® @ None None
Trusted server L ) - - @ None Messaging: Trusted server(s)
Long-term signature keys o0 - - ® ® @ Constant metadata per None
message
Ephemeral signature keys ® @ O Ifrefreshed - ® @ One constant-sized None
pairwise broadcast per
user per refresh; constant
metadata per message
Ephemeral signature keys for ® - 0 ) - @ @ One constant-sized Transcript consistency:
consistency checks pairwise broadcast per non-signature-free with no
user signatures on messages
Pairwise channels o0 o ) ® ® None Encryption key type: Pairwise
channels
Pairwise digest comparison ® - @ Table34 - - None Transcript consistency: Pairwise
digest comparison
Table 3.2: Properties of protocols for the author authentication part of a group messaging protocol. “@”: has the property; “-”: does

not have the property; “©”: partially has the property.
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No Yes
0 Yes
Deniability?
es No
[Long-term signature keys)
Yes No

Signature-free
transcript consistency
protocol
OR
no pairwise broadcasts?

Message unlinkability
OR

no pairwise broadcasts?

No pairwise
broadcasts

Unlinkability [Mixed (tunable) No pairwise broadcasts Signature-free

- Ephemeral signature Ephemeral signature Ephemeral signature Pairwise digest
Pairwise channels keys for consistency -
keys (refreshed) keys (not refreshed) checks comparison

Figure 3.3: A flowchart of author authentication protocols, leading from desired proper-
ties to a protocol meeting those properties.
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One way to gain deniability is to use ephemeral signature keys: each user generates
an ephemeral signature key during group setup and broadcasts it to the group over
pairwise Signal protocol channels, then uses that key to sign messages. This protocol was
introduced by mpOTR, [28] and is used by WhatsApp [22]. In the ephemeral signature
keys for consistency checks protocol, the ephemeral keys are only used during transcript
consistency checking after messages are sent, not to sign individual messages. This is
used by SYM-GOTR [21].

Another approach is to use pairwise Signal protocol channels for authentication, since
they are deniable. In the pairwise channels protocol, users send all messages other these
channels. This is used by Signal [15] and Mobile CoWPI [24]. In the pairwise digest
comparison protocol, the pairwise channels are used for transcript consistency checking

only; we give a full description in Section 3.5. This is used by GOTR [20].

3.5 Transcript Consistency

In this section, we discuss transcript consistency, which means that all honest users agree
on the set of messages sent so far and their ordering.! This is another security property

that is important in the group setting but not the two-party setting.

Existing deployed group messaging protocols tend not to address transcript consistency.
Many applications, such as WhatsApp, use the trusted server protocol described below,
while Signal’s group chats over pairwise channels do not check transcript consistency
at all [15]. However, several protocols for ensuring transcript consistency appear in the

academic literature.
We distinguish two types of adversary who may try to violate transcript consistency:

Malicious delivery service The delivery service, e.g., a network adversary or a mali-
cious server, may drop, resend, or delay messages arbitrarily. However, we assume
that cryptographic integrity checks (e.g., a MAC) prevent a malicious delivery ser-

vice from altering the contents of messages.

Malicious users Malicious users in a group may arbitrarily violate the protocol in an
attempt to violate transcript consistency among the other group members, or to

prevent them from checking their own consistency.

LOur terminology differs slightly from Unger et al.[8], who define two different properties correspond-
ing to transcript consistency, speaker comnsistency and global transcript, which reference the per-sender
and linear orderings, respectively.
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3.5.1 Properties

We evaluate protocols with respect to the following properties.

Malicious delivery service tolerant A malicious delivery service cannot cause any two
honest users to believe that their message sets are consistent when they are not.
A protocol partially fulfils this property if the delivery service consists of multiple

servers and transcript consistency holds so long as at least one server is honest.

Malicious user tolerant (safety) Malicious users cannot cause any two honest users to
believe that their message sets are consistent when they are not. If the protocol
calls for users to discard messages found to be inconsistent, we additionally require
that users have a consistent view of which messages should be discarded, at least

eventually; otherwise the protocol only partially fulfils this property.

Malicious user tolerant (liveness) Any subset of honest users can check that their mes-
sage sets are consistent and check the consistency of new messages, even if the
remaining users act maliciously when sending messages or during consistency check-

ing.

Assigns blame In case of an inconsistency, all honest users will agree on which users are

at fault, even if the remaining users act maliciously during consistency checking.
Compatible orderings Message orderings that this protocol is compatible with.

Signature-free The protocol does not require signatures to accompany messages, so that

some other form of author authentication may be used.
Message unlinkability preserving Same as for author authentication protocols.

Partition tolerant Any subset of users in a reliable network can check their internal tran-

script consistency.

Asynchronous Users do not need to communicate with other users before accepting a

message’s consistency.

Cost The communication cost of the protocol compared to no transcript consistency

checking.

3.5.2 Protocols

Tables 3.3-3.4 evaluate protocols with respect to the above properties. Figure 3.4 presents
the results in flowchart form, giving an algorithm that a group messaging protocol designer

can use to select a transcript consistency protocol given their requirements.
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agreement
ID chaining o - - Per-sender, causal - - ® @ Constant metadata (ID) per message per
immediate predecessor
Hash chaining ® @ @ O Per-sender, causal - - ® @ Constant metadata (ID, hash) per message per
immediate predecessor
Broadcast digest ® O - - Table 3.4 - Table 3.4 - - One constant-sized broadcast per user per digest
comparison
Pairwise digest e O - - Table 3.4 ® Table 3.4 - - One constant-sized pairwise broadcast per user per
comparison digest
Double digest e e - O Table 3.4 - Table 3.4 - - One constant-sized pairwise broadcast per user per
comparison digest, then one (# disagreements)-sized pairwise

broadcast per user per digest

Table 3.3: Properties of protocols for the transcript consistency part of a group messaging protocol. .
not have the property; “©”: partially has the property.
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has the property; . does

24



Yes

NO

At least one in a federation

Efficient linear ordering
OR
server DoS resistance?

Efficient linear ordering

[Federated server agreement)

es No

Reliable in-order Asynchronous?
delivery service?
No Yes

es No

[No checkingj (ID chaining)

Full malicious user
tolerance (safety)?

Hash chaining

0 Yes
comparison

es No
Pairwise digest Broadcast digest
comparison comparison

Figure 3.4: A flowchart of transcript consistency protocols, leading from desired proper-

ties to a protocol meeting those properties.
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Message SYM-GOTR [21] Linear @ Per-message
Transcript so far GOTR [20] Linear - Per-message
Transcript at end mpOTR [28] Any - Once at end
“Sealed block” KleeQ [18, §5]  Per-sender, causal © Per-block (about once

each time every user
sends a message)

Table 3.4: Properties of digest comparison protocols when used with particular digests.

W,

“@”: has the property; “”: does not have the property; “©”: partially has the property.

We now describe the evaluated protocols in detail.

A baseline protocol is to use a trusted server to broadcast the same ciphertexts to all
users, as in WhatsApp. A variant is federated server agreement, in which users send
messages to a federation of servers, and users accept a received message only if they
receive the same ciphertext from every server. This protocol was introduced by Mobile
CoWPT [24].

In ID chaining, users assign unique numbers to each message that they author, such as
a counter, and attach to each message the (author, number) pairs of its predecessors.
Users request forwarding of missing predecessors from other users, in case they have been
dropped by the network; this requires signatures on messages to validate their original
authors. ID chaining can be used to implement waiting causal broadcast in the face of a
malicious delivery service: messages are delivered in causal order by delaying them until

their causal predecessors have been delivered [29].

Hash chaining is a variant of ID chaining in which message IDs additionally include a hash
of the message itself, so that they uniquely identify messages even if a user maliciously
reuses message numbers. By including a message’s predecessor list when computing its
hash, each message implicitly includes a structure similar to a hash chain or Merkle
tree [30] of all prior messages. Various systems use hash chains to detect consistency
violations, including Git [31] and fork-consistent distributed systems (e.g., SUNDR [32]).
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Kleppmann et al. [7] mention hash chains in connection to transcript consistency of group
messaging. Our policy of forwarding missing messages, instead of allowing permanent

forks, appears in Summary Hash History [33] and Depot [17].

Digest comparison protocols instead check consistency after sending. Users can either
wait to display messages until they are confirmed consistent, as in SYM-GOTR [21], or
display messages immediately and report an error if an inconsistency is discovered later,
as in mpOTR [28]. Note that in the former case, the protocol is neither asynchronous
nor partition tolerant. In the broadcast digest comparison protocol, users periodically
compute a hash digest of recent messages, sign it with their author authentication keys,
and broadcast the signed digest to the group. Users compare all received digests for
consistency. Variants of this protocol are used by mpOTR [28] and KleeQ [18]. Different
choices of digest are detailed in Table 3.4. Pairwise digest comparison is the same, but
digests are sent over pairwise Signal protocol channels to every other user instead of being
signed and broadcast. This protocol is used in GOTR [20].

Double digest comparison is a variant of pairwise digest comparison that adds signatures
to the digests, plus an extra round after sending digests in which users broadcast their
received signed digests over pairwise channels. If a user notices that another user signed
conflicting digests, they share the conflicting digests with the group and warn the applica-
tion layer that not all users may have accepted the original message. This was introduced
by SYM-GOTR [21].

3.6 Summary and Related Work

This chapter presented a novel taxonomy of secure group messaging protocols. The
taxonomy divides protocols into largely interchangeable parts: messaging, encryption
key management, author authentication, and transcript consistency. One can build a
complete protocol by choosing the desired implementation of each part, using the above

tables of properties and flowcharts as a guide.

To demonstrate its relevance, Table 3.5 classifies existing protocols according to the

taxonomy.

Our general style of listing properties and then assessing protocols with respect to those
properties follows Unger et al.’s survey [8]. We improve upon Unger et al.’s discussion
of group messaging protocols by breaking protocols into parts, instead of evaluating
existing works as whole protocols, and by generally discussing group messaging protocols
in greater detail. In the encryption key management section, the cost evaluations in Table

3.1 partially match a similar table in the ART paper [27, Table 1], but no prior works
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Protocol Messaging Encryption key  Author authentication Transcript consistency Notes
management
WhatsApp Server broadcast Sender keys Ephemeral signature keys Trusted server
Signal Server pairwise Pairwise channels  Pairwise channels None
sending

mpOTR, [28] Direct broadcast Plain shared key Ephemeral signature keys Broadcast digest Ephemeral signature key
comparison (transcript at exchange is consistent but
end) synchronous

GOTR [20] Direct broadcast Sender keys Pairwise digest Pairwise digest Each sender key includes

comparison comparison (transcript so contributions from all

far) users

SYM-GOTR [21]  Direct broadcast Sender keys Ephemeral signature keys Double digest comparison Each sender key includes

Mobile CoWPI [24]

KleeQ [18]

Federated server
pairwise sending

Gossip

Pairwise channels

Plain shared key

for consistency checks

Pairwise channels

None

Federated server
agreement

Broadcast digest
comparison (sealed block)

contributions from all
users

Key negotiation uses
implicit Diffie-Hellman
tree

Table 3.5: A classification of existing secure group messaging protocols using the taxonomy.
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survey author authentication or transcript consistency as we do.
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Chapter 4

Causal TreeKEM: Post-Compromise
Secure Group Key Agreement for

Causal Broadcast

The classification of encryption key management protocols in Table 3.1 shows that

TreeKEM is the most efficient protocol for a group that uses frequent state changes to
add or remove users or to achieve post-compromise security. It also forms the core of the
Messaging Layer Security (MLS) draft IETF standard [23], hence may be widely deployed

in the future.

However, TreeKEM requires a consistent linear order on state changes. That is, there is
a linear sequence of group states agreed upon by all group members, and the next state
change message can only be generated by a user who knows the most recent state. When
all communication happens through a trusted central server, the server can enforce an
order without much difficulty, but as discussed in Section 3.2 below, not all applications
have a central server. Additionally, we would like to minimize our trust in servers, for

instance for the group messaging protocol in Chapter 5.

To solve this problem, I designed Causal TreeKEM, a novel modification of TreeKEM that
requires only a consistent causal order on messages. A causal order is much more natural
than a linear order in the asynchronous setting, especially when there is not a trusted cen-
tral server. Causal TreeKEM supports arbitrary concurrent state changes while achieving

strong and intuitive forward secrecy and post-compromise security guarantees.

This chapter presents Causal TreeKEM. Section 4.1 describes the necessary background
on (ordinary) TreeKEM. Section 4.2 discusses the motivation for Causal TreeKEM in
detail, explaining why techniques for enforcing a consistent linear order do not work well

without a trusted central server. Section 4.3 introduces the main idea of Causal Tree KEM.
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For space reasons, we further discuss Causal TreeKEM in Appendix A, including dynamic
groups and security proofs, although the proofs are incomplete because there are currently

no published security proofs for ordinary TreeKEM.

4.1 Background on TreeKEM

In this section, we describe (ordinary) TreeKEM, following the presentation in the MLS
draft standard version 4 [23]. We focus only on the abstract group key agreement protocol,

ignoring issues like authentication or precise message formats.

First, we fix some asymmetric cryptosystem with a Derive-Key-Pair function DKP map-
ping binary strings to asymmetric key pairs (private key, public key). As a convenience,
we let priv(z) and pub(x) denote the private and public keys of DKP(z), respectively.
We also fix a Key Derivation Function KDF mapping pairs of binary strings to binary
strings, which we treat as a collision-resistant two-input hash function. We will use KDF
to deterministically derive new secret values from existing ones, with a purpose string as

the second argument to prevent collisions, e.g., (secret 2) = KDF((secret 1), “next”).

4.1.1 Ratchet Trees

A group of n users who wish to derive a shared group secret arrange themselves in a
ratchet tree. This is a left-balanced binary tree with users at the leaves. Each node is
labelled with three values: a secret string called its node secret, an asymmetric private

key, and an asymmetric public key, satistying
(private key, public key) = DKP(node secret).

See Figure 4.1 for an example. Optionally, a node’s node secret may be blank, in which

case its private and public keys are not defined.

When a group is first formed, its ratchet tree contains a root and a single leaf node
corresponding to the group initiator. The initiator then constructs the group by adding

users one at a time, as described in Section 4.1.4, creating a leaf for each user.

Assuming users follow the protocol correctly, the following invariant always holds: every
user knows all node secrets, and hence private keys, on their leaf’s path to the root, as
well as all public keys in the tree. Users cannot compute other node secrets or private
keys in the tree. Shared group secrets will be derived from root node secrets, which every

user knows.
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A:a B:b C:c D:d

Figure 4.1: A ratchet tree with four users A, B,C, D. Here we show the node secrets at
each node.

4.1.2 Key Updates

At any time, any user may perform a key update by sending an Update message. This
replaces some of the node secrets in the tree, including the root node secret. Key updates

are crucial to attaining forward secrecy and post-compromise security.

We define the direct path of a node to be the list of nodes on the path from that node
to the root, including the node itself but excluding the root. The copath of a node is the
list of siblings of nodes on its direct path. The resolution of a node is defined recursively
by:

e The resolution of a node whose node secret is not blank is the singleton list con-

taining the node.

e The resolution of a node with a blank node secret is the concatenation of its chil-

dren’s resolutions.

Examples are given in Figures 4.2-4.3.

A:a @ C:c D:d

Figure 4.2: The direct path (boxed) and copath (circled) of A’s leaf node.

To perform a key update, a user U first generates a fresh secret x. U then generates path
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N

Figure 4.3: An example of a blank node’s resolution. The circled nodes form the resolution
of the blank node.

secrets for every node on its direct path plus the root by recursively setting

path secret of U’s leaf := x

path secret of parent of a node L := KDF(path secret of L, “path”).
Then for each of these nodes, U updates its own copy of the ratchet tree by setting
node secret of a node L := KDF(path secret of L, “node”).

Note that the path secrets are temporary values used during the key update only; only
the node secrets become part of the stored state. Figure 4.4 shows the secret derivation
process in diagrammatic form, while Figure 4.5 shows the effect of an example update

with U = A in a tree with four users.

KDF(—, “path” KDF(—, “path”
=z (=, “path”) P (=, “path”) P
lKDF(—, “node”) lKDF(—, “node”) lKDF(—, “node”)
o Ty g

Figure 4.4: Derivation of node secrets =,z z1 and path secrets =¥, 2z’ from leaf

to root, using starting secret .

After updating the node secrets in its own state as above, U sends an Update message to
the group to inform them of these changes, so that the group maintains a shared ratchet

tree. The Update message contains:

(1) For each node L on U’s direct path, the new public key for L, i.e., pub(new node
secret for L). In the example of Figure 4.5, these public keys are pub(x?) for A’s
leaf and pub(2d) for the parent of A and B.
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A:a B:b :d A:x;N B:b

Figure 4.5: The change in a group’s ratchet tree resulting from a key update by A with

node secrets ¥,z 2} from leaf to root. Here we show the tree of node secrets. Recall

that users only know the node secrets on their own leaf’s path to the root, but they know
the public keys for all nodes in the tree.

(2) For each node M on U’s copath, the new path secret for M’s parent, encrypted
asymmetrically under the public keys of every node in M’s resolution. In the
example of Figure 4.5, these encryptions are Encpup) (x') for M equal to B’s leaf
and Encpun(p)(2}) for M equal to the parent of C' and D. Here Encg(z) denotes
the encryption of x under the public key K.

See Figure 4.6 for an example. Note that when there are no blank nodes in the tree, an
Update message contains one encrypted key for each node on the copath of the updating

user’s leaf, hence has size O(log(n)).

pub(‘rjlv)v pub(:cév), Encpub(b) (.Tg), Encpub(f) (‘T§>

Figure 4.6: The Update message corresponding to the update in Figure 4.5.

When a user V' receives this Update message, V uses it to update its own copy of the

ratchet tree as follows:

e V sets the public keys for the nodes on U’s direct path to those given in part (1)
of the Update message.

e VV decrypts the update’s path secret for its nearest common ancestor M with U,
i.e., the closest node that is an ancestor of both U’s and Vs leaves, from one of the
encrypted values given in part (2) of the Update message. This is possible because
by definition of a node’s resolution, U has sent M’s path secret encrypted under the
public key K of some node on the path between V'’s leaf and M. By the invariant
from Section 4.1.1, V knows the private key corresponding to K, hence can decrypt
the path secret of M. In the example of Figure 4.5, B’s nearest common ancestor
with A is their parent, and B can decrypt z% using priv(b). The nearest common

ancestor of each of C' and D with A is the root, and C' and D can decrypt =% using

priv(f).
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e IV computes the update’s path secrets for all ancestors of M, using KDF, and then

computes the corresponding node secrets using KDF.

Figure 4.7 gives an example illustrating this process.

/A

xoN f

AN

A:x N B:b C:c D:d

Figure 4.7: An illustration of how the TreeKEM Update message in Figure 4.6 works,
i.e., how it informs other users of the new secrets. It sends (the predecessor z1’ of ) 2 to
B by encrypting it under pub(b), while it sends (the predecessor xf of) 22 to C' and D
by encrypting it under pub(f).

Observe that the key update protocol preserves the invariant from Section 4.1.1: each
user knows all node secrets on their leaf’s path to the root, as well as all public keys in

the tree, but they cannot compute other node secrets in the tree.

4.1.3 Init and Application Secrets

The purpose of TreeKEM is to generate secrets shared by all group members, which they
can then use to derive message encryption keys. To accomplish this, TreeKEM uses root
node secrets to generate a chain of init secrets, which implicitly incorporate the root
node secrets from all prior updates. Init secrets are then combined with group state
information to generate application secrets, which are used to generate actual message
encryption keys. Figure 4.8 shows this process diagrammatically. Incorporating old root
secrets and group state information into the keys is necessary to provide post-compromise

security and participant consistency.

4.1.4 Adding and Removing Users

Suppose a user U wishes to remove a user V' from the group. To do this, they must share
a new secret with all users except V', which every user except V then uses to derive a

new application secret. That way, V' cannot decrypt future message sent to the group.

TreeKEM implements this as follows. For a user U to remove a user V', they generate

a Remove message, containing V’s identifier and an Update message sent as if U were
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application secret

KDF(—, “app”)

KDF(—, “init”)

/N

Update’s root secret ~ Group info

previous init secret new init secret

Figure 4.8: Deriving the new application secret after a TreeKEM Update message, using
a chain of init secrets to incorporate the root node secrets from all prior state changes.

in V’s position in the tree. Every user except V derives the new root node secret from
this update and uses it to derive new init and application secrets. Then every user sets
all node secrets on V’s direct path plus the root to blank. Blank nodes are used here
because otherwise U would know all of the new node secrets on V’s direct path, violating

the usual invariant. See Figure 4.9 for an example.
. 5 N —_—

e/\f e X e/\
o T N I I A

A:a B:b C:c D:d h "C":x;N D:d A:a B:b D:d

Figure 4.9: Removing a user in TreeKEM. Here A removes C' with update node secrets

o 2l 2. The circled root node secret, 23, is used to generate new init and application

secrets unknown to C.

For a user U to add a user V', they send a Welcome message to V' containing the current
group state and tree of public keys and the most recent init secret. U then sends an Add
message to the whole group, including V', which contains a public key for V. This public
key could be a signed prekey that V' previously uploaded to an untrusted server. Every

user then:

e Adjusts the tree structure to accommodate a new leaf for V' while keeping it left-

balanced.

e Sets all node secrets on V'’s direct path plus the root to blank, and sets V'’s leaf’s

public key to the public key in the Add message.

e Derives new init and application secrets from the current init secret as in Figure

37



4.8, using a string of zeroes in place of the update root node secret.

Finally, V' sets its own leaf node secret to the secret that was used to derive the public
key in its Welcome message. It is presumed that V' alone knows this node secret. See

Figure 4.10 for an example.
8
e f

A:a B:b C:c D:d B:b C:c D:d

vaY

Figure 4.10: Adding a user in TreeKEM. Here A adds H with initial leaf node secret h.

Note that after processing the Welcome and Add messages, V' knows all public keys, all
node secrets on its direct path (namely, its leaf node secret and some blanks), and the

new init and application secrets. Thus V' can function as a group member.

4.1.5 Security

Current public documentation about TreeKEM does not address its security in detail.
However, the intent is that TreeKEM has forward secrecy and post-compromise security,
at the granularity of Update messages [34, §3.2.2.1], following the security model for ART
[27]. That is, if an adversary compromises a subset of users S at a given point in time
(i.e., makes a copy of their current states but then loses access to their devices), the
adversary cannot compute later application secrets once all users in S send an Update
message, and they cannot compute earlier application secrets from before the last time
all users in S sent Update messages. In addition, removed users should not be able to
compute application secrets after they are removed, and added users should not be able

to compute application secrets from before they were added.

Intuitively, TreeKEM achieves the above post-compromise security guarantee as follows.
An adversary who compromises some subset S of users, making a copy of their current
states but then losing access to their devices, obtains the node secrets of every node that
is an ancestor of a compromised user’s leaf. Whenever a user makes a key update, all

nodes on their direct path which do not have a separate unhealed descendant become
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healed, i.e., no longer known to the adversary. Hence after a subset S’ of users has
sent Update messages, the adversary only knows the node secrets of nodes that are an
ancestor of some leaf in S\ S’. Thus once S O S, the adversary does not know any
node secrets. In particular, the root node secret is unknown to the adversary, so that
its resulting application secret is unknown as well. Message encryption keys, which are

derived from this application secret, are then secure.

4.2 Motivation

As mentioned in the introduction, TreeKEM implicitly assumes a consistent total order
on state changes (key updates, adds, and removes). That is, there is a linear sequence of
group states agreed upon by all group members, and the next state change message can

only be generated by a user who knows the most recent state.

This is not just a matter of convention, and indeed, concurrent state changes can cause
problems. For example, if two users concurrently send Update messages and then each
add a user, the two added users share no init or application secrets in common and so

cannot securely communicate.

We now discuss proposals from the MLS draft standard [23, §8] for maintaining a total

order on state change messages and explain why they are inadequate.

4.2.1 Server-Enforced Ordering

In group communication platforms with a trusted central server, the server can decide
on the order of state change messages and reject those that do not properly depend on
their predecessor. The server can also coordinate between users; for example, if multiple
users try to add new group members concurrently, the server can instruct them to act in

a particular sequence, allowing all additions to succeed after a short delay.

However, this technique only works if all state change messages pass through a trusted
central server, which not all group messaging protocols assume (see Section 4.2.4 below).
Trust in the central server is required because a malicious server can reject all Update
messages by a particular user. This allows the server to violate confidentiality forever if

they compromise a user once, so that post-compromise security against the server does
not hold.
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4.2.2 Client-Enforced Ordering

Clients can enforce a total order on state change messages by using a protocol for total
order broadcast (see [35] for a survey). Such a protocol would work regardless of the
choice of messaging protocol, and it would not require trust in a central server, so long

as users have alternative communication channels to prevent a server denial-of-service.

However, using a total order broadcast protocol adds considerable complexity. Such a
protocol can also lead to long delays before state changes are committed in the total
order. In particular, if the network is partitioned into two subsets of users, at most one
of these subsets will be able to continue performing total order broadcast; the other will
not be able to commit any state changes until the partition is healed, preventing them
from achieving post-compromise security or adding and removing users. We expect long
network partitions to happen frequently in the asynchronous setting, since users often go

offline, making these delays unacceptable.

4.2.3 Partially Concurrent Key Updates

TreeKEM does have some support for concurrent Update messages [36, §5]. Update
messages can be merged at nodes where they do not conflict, with an arbitrary winner

at conflicting nodes [36, pg. 9], as shown in Figure 4.11.

8 x3N

/ \ / \

e f —_— xoN

f
SOOI AT IN

A:a B:b C:c D:d A:x;N B:y)N

Figure 4.11: Merging updates in ordinary TreeKEM. Here A updates with node secrets

o 2l 2l while B updates with node secrets yI¥,yY, yl concurrently. Note that B

learns ) and z3 from A’s Update message, so the usual invariant still holds.

If we use all of the root node secrets from multiple concurrent Update messages to generate
init and application secrets in Figure 4.8, as suggested by Bhargavan et al. [36, Figure 6],
then the application secret resulting from Figure 4.11 is unknown to an adversary who

had previously compromised either A or B.

However, if the adversary later compromises another user, merging updates in this way
reduces the post-compromise security guarantee relative to no concurrency. An example

is as follows.
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In the group shown in Figure 4.11, suppose the adversary compromises B, B sends an
Update message, the adversary compromises C', and then C' sends an Update message.
Assuming TreeKEM has post-compromise security, the application secret resulting from

(C’s update is unknown to the adversary.

Now suppose the same scenario occurs, except that A also sends an Update message
concurrently to B’s Update message, as in Figure 4.11. At no point is A compromised.
However, now the application secret resulting from C’s update is known to the adversary,
as follows. From compromising B, the adversary knows b. Using this, the adversary
learns x2 from A’s Update message. Using x2’, the adversary learns the root node secret
from C’s Update message. Together with the init secret that the adversary learned by
compromising C, this allows the adversary to compute the init and application secrets

resulting from C’s Update message.

In summary, TreeKEM’s support for concurrent Update messages is not ideal, providing
a weaker and less intuitive post-compromise security guarantee than for totally ordered

Update messages.

4.2.4 Server-Free Use Cases

As discussed above, TreeKEM’s linear ordering requirement only works well if there is
a trusted central server to enforce the order. However, many potential use cases do not

have a central server, trusted or otherwise. We now discuss these.

One use case is federated group communication platforms, in which there are multiple
interconnected servers, typically run by different organizations. Examples include IRC
and Matrix!. Using federated servers to enforce a total order would require the servers
to coordinate total order broadcast, which adds complexity, especially if clients do not

trust all servers.

Another use case is group communication systems that let clients communicate even if
they are not connected to the global Internet. These include mobile ad-hoc networks, op-
portunistic networks, and delay-tolerant networks. FireChat? is one real-world example,

with use cases including disaster response and censorship resistance.

A further potential use case is group applications that can work over a LAN but also
connect to a central server when available. One popular application along these lines is

Apple Airdrop?, which lets users share files over a LAN. This avoids sending files to and

https://matrix.org/blog/index
2https://www.opengarden.com/firechat/
3https://support.apple.com/en-gb/HT203106
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from a cloud service and works without a connection to the global Internet. Chapter 5

targets applications of this form, and it was the original motivation for Causal TreeKEM.

4.3 Causal TreeKEM

We now present Causal TreeKEM, a novel modification to TreeKEM developed for this
dissertation that supports arbitrary concurrent state changes. This section describes the
core of the protocol, restricted to the case of static groups. We have also defined protocols
for adding and removing users and written security proofs; for space reasons, these appear

in Appendix A.

As in TreeKEM, we fix functions DKP, pub, priv, and KDF (see Section 4.1.1). Causal
TreeKEM uses a ratchet tree, i.e., a binary tree with key pairs at each node, precisely
as in TreeKEM, except that there are no node secrets in the stored state, just node key

pairs. Node secrets will still play a role in Update messages.

We additionally fix binary key combination operators x1,*2, mapping a pair of asymmetric
private keys (resp. public keys) to an asymmetric private key (resp. public key). We let
* = (%1, *2) denote their combination acting on asymmetric key pairs. We require the

following properties:

(1) If (z,X) and (y,Y) are valid key pairs, then so is

(2, X)x (g, Y)=(z*x y, X % Y).

(2) * is associative and commutative.

(3) 1 is cancellative: if x %1 z = y x1 z for some z, then x = y.
Example 4.3.1. Let g be the generator of a Diffie-Hellman group with order |g|. Suppose
we use a Diffie-Hellman based asymmetric cryptosystem, in which key pairs have the form

(x,9"). Then we can define x on key pairs by

(z,9") % (y,9") == (x+y (mod |g]),g"g").

4.3.1 Key Updates

Users generate Update messages precisely as in ordinary TreeKEM. However, users pro-
cess Update messages differently. Instead of treating an Update message as an instruction
to overwrite keys with new key material, users treat it as an instruction to combine the

new key material with the previous keys using .
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Specifically, a user V' receiving an Update message from a user U uses it to update its

own view of the ratchet tree as follows:

e I/ updates the public keys for the nodes on U’s direct path as

(new public key) := (current public key) x2 (public key in Update message).

e V computes the update’s path secret for its nearest common ancestor with U, as
in ordinary TreeKEM.

e IV computes the update’s node secrets for all ancestors of its nearest common an-
cestor with U using KDF, as in ordinary TreeKEM. Then for each node L on the

path from the nearest common ancestor to the root, inclusive, V' sets

(new private key for L) := (current private key for L) *;

priv(update’s node secret for L).

Figure 4.12 gives an example of a lone update (compare to Figure 4.5), while Figure 4.13

gives an example of merging two concurrent updates (compare to Figure 4.11).

g g % x3N

/ \ /\

e f R e %1 xoN

LI N 7 !\

A:a B:b C:c D:d A:a%ix;N B:b C:c D:d

Figure 4.12: The result of a Causal TreeKEM update by A with node secrets z¥, 23, 2%

from leaf to root.

g g % x3N %y y3N
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e f ﬁ e %1 x2N % yoN
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Aia B:b C:c D:d A:aXix;N B:b;y/N C:c D:d

Figure 4.13: Merging updates in Causal TreeKEM. Here A updates with node secrets

o 2l 2l while B updates with node secrets v, 4, yl' concurrently.

Observe that the key update protocol preserves the usual invariant, except with private
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keys in place of node secrets: each user knows all private keys on their leaf’s path to the
root, as well as all public keys in the tree, but they cannot compute other private keys

in the tree.

Additionally, concurrent key updates are handled in a natural way, with no need to

discriminate between concurrent Update messages.

Furthermore, because % is associative and commutative, the order in which users process
Update messages does not affect their final state. Any sequence of Update messages,

applied in any order, yields the same tree of private and public keys.

4.3.2 Causal Ordering

Despite the associativity and commutativity of x, users must still process Update messages
in causal order, so that they have the private key needed to decrypt each Update message’s

nearest common ancestor path secret.

To describe this requirement precisely, we borrow some definitions from the concurrency
literature. Let < denote the causal order on state change messages.

Definition 4.3.2. Two messages m,m’ are concurrent if they are incomparable under
<, i.e., neither m < m’ nor m’ < m. If m < m/, then m is a causal predecessor of m/,
and m’ is a causal successor of m. The direct causal predecessors of m are the maximal
elements of {/ | | < m}.

Definition 4.3.3. A configuration is a set S of state change messages that is downwards-
closed: if m’ € S and m < m/, then m € S. We define a user configuration to be a pair
(U, S), where U is a user and S is a configuration. The ratchet tree of (U, S) is U’s view
of the ratchet tree after processing exactly the messages in S. The root private key of S
is the root’s private key in the ratchet tree of (U, S) for any user U; note that this does

not depend on our choice of U, since all users share the root private key.

We now mandate that when a user U sends a state change message m, such as an Update
message, they include a description of the set S of state change messages that they have
already processed. This description could be a list of the hashes of the direct causal
predecessors of m. Note that S is necessarily a configuration, and it is precisely the set
of causal predecessors of m. When a user V receives this message, they compute the
ratchet tree of (V,S) and use its private keys to decrypt the nearest common ancestor

path secret in m.

Now all that we require of the underlying messaging protocol is causal broadcast, in which
messages are delivered in causal order to all users. This is much easier to implement than

totally ordered broadcast [29]. For example, the ID chaining and hash chaining transcript
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consistency protocols described in Section 3.5 enforce causal broadcast in an asynchronous

setting. Hash chaining does so even in the face of malicious users.

4.4 Application Secrets

In contrast to TreeKEM, in Causal TreeKEM, the root private keys in a given state
depend on all causally prior key updates. Thus we propose to use root private keys

directly instead of generating separate init secrets.

Now suppose a user U wishes to encrypt an application message (not a state change
message). Let S be the set of state change messages that U has processed so far. Then
U generates the application secret for S by applying some key derivation function to the
root private key for S and group state information, as shown in Figure 4.14. U then
generates message encryption keys from the application secret, as in ordinary TreeKEM.
Note that U must attach some description of S to its message, necessarily as plaintext,

so that recipients know which version of the root private key and group state to use.

application secret for S

KDF(—, “app” )W

root private key for S Group info

Figure 4.14: Deriving application secrets in Causal TreeKEM.

A user V receiving a message tagged with S computes the root private key of S and uses

this to generate the application secret for S and then the message encryption key.

4.5 Summary and Related Work

This chapter presented Causal TreeKEM, a modification of the TreeKEM encryption key
management protocol that supports arbitrary concurrent state changes. Causal TreeKEM
has efficient support for adding and removing users and post-compromise security in a
causal broadcast setting. This is necessary for asynchronous group messaging without a

trusted central server.
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TreeKEM and its predecessor, ART [27], are the only existing protocols that consider
post-compromise security in a broadcast group setting. Both require a consistent linear
order on state change messages. Even omitting post-compromise security, relatively few
works have considered the problem of key agreement in a dynamic group. Key agreement
protocols that do allow dynamic groups, such as GDH.2-3 [37] and TGDH [38], all require
a consistent linear order on group membership changes, and they are synchronous because

they require specific users to participate in group membership changes.
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Chapter 5

From Secure Group Messaging to

Secure Collaboration

5.1 Scenario

The TRVE Data project [7] seeks to develop an end-to-end encrypted collaborative doc-
ument editing application, like Google Docs but without a trusted server. Existing work
shows how to do this given a secure group messaging protocol with certain properties
[39, 6]. Specifically, CRDTs allow a group of users to maintain a shared mutable docu-
ment state by broadcasting CRDT update messages to the group, with updates resolved
in a natural and communication-free way. As long as the update messages are end-to-end
encrypted, the resulting document state is end-to-end encrypted as well. Thus it re-
mains to design an appropriate secure group messaging protocol to broadcast the update

messages.

Design goals for such a protocol, both for TRVE Data and for secure asynchronous

collaboration in general, include:

Consistent causal broadcast Messages must be delivered in a consistent causal order
to all users, but not necessarily a consistent linear order. Using CRDTs, this is
necessary and sufficient for users to see a consistent view of their collaborative
work [5].

Large, dynamic groups Groups can be large, and users can be added and removed.

Minimal trust Networks, servers, and even other users are not trusted to behave hon-
estly or to follow the protocol specification. Specifically, the protocol should have
confidentiality and integrity against powerful malicious networks and servers, it

should maintain author authentication and transcript consistency in the face of
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malicious group members and outsiders, and it should resist denial-of-service at-

tacks by malicious group members and outsiders.

Not just a central server Users can communicate using channels besides a single cen-
tral server, such as alternative servers or direct peer-to-peer connections. In partic-
ular, a subgroup of users connected to each other but not the global Internet can

continue collaborating and synchronize their state with the rest of the group later.

Mobile support The protocol is asynchronous and both communication- and

computation-efficient, so that users can collaborate using mobile devices.

In this chapter, we use the taxonomy from Chapter 3 to design a secure group messaging
protocol fulfilling the above goals. We do this both to construct a practical protocol and

to illustrate the taxonomy’s utility.

5.2 Design Choices

We choose protocol parts by following the flowcharts in Chapter 3 (Figures 3.2-3.4), with

the exception of the messaging part.

Messaging To support mobile devices, we want to use a store-and-forward server that
buffers messages. However, we also want a backup communication method in case
the server performs a denial-of-service attack or users want to collaborate offline. To

combine these two approaches without redundancy, we choose a gossip protocol, in

which users or servers occasionally form peer-to-peer connections and synchronize
their sets of messages. Typically users will only gossip with a central server, but
they may also gossip with alternative servers or with other users, for example using

WebRTC! to make direct peer-to-peer connections.

Encryption key management For efficiency in large groups, we want to allow mes-
sage broadcast. To achieve strong security, we want post-compromise security,
and we need to be able to add and remove users; thus we choose efficient state
changes. However, because users can communicate using channels besides a single
central server, we also need no linear ordering requirement. Thus we break from
the flowchart in Figure 3.2 and instead choose Causal TreeKEM from Chapter 4,

which achieves these properties simultaneously.

Author authentication As part of our goal of minimal trust, we do not assume trusted

users or a trusted server. Deniability would be hard to achieve socially even if it

'https://webrtc.org/
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was achieved technically, since groups may be large, and collaborative applications

often keep edit histories. Thus we choose long-term signature keys.

Transcript consistency As part of our goal of minimal trust, we do not assume a
trusted server or trusted users. Next, the protocol must be asynchronous. Thus we

choose hash chaining.

5.3 A Unified Protocol

At a high level, we form a unified protocol using the above protocol parts as follows.
All message exchanges occur through a peer-to-peer protocol we call patching with hash
chaining, borrowing the term patching from KleeQ [18, §4]. Two peers, who can be
users or servers, synchronize their message sets by performing this protocol. That is,
after completing the protocol successfully, they both possess the union of their original
message sets. The messages exchanged through this protocol are ciphertexts encrypted
using Causal TreeKEM, plus Causal TreeKEM state change messages. Users in the
group use the state change messages to compute encryption and decryption keys for the

ciphertexts.

As in hash chaining, each message includes a per-author message number and a list of
the (author, number, hash) triples of its direct causal predecessors. Message authors are

enforced using signatures under the long-term signature keys.

Using this information, a patching with hash chaining interaction between two peers works
as follows. The peers first exchange the maximum message number they have received
from each user. Next, they exchange any messages which they know the other user does
not have, based on the message numbers. They then check that they have the correct
predecessors for each message by comparing hashes. If one peer is missing a message
with a particular hash, then it must be the case that its author forked their sequence
of messages, by sending two messages with the same number but different hashes. The
peers then perform a binary search to identify the first forked message number, after
which they forward messages that the other needs. Note that this resolves the entire
fork after a number of rounds proportional to the log of the number of forked messages.
Each peer that is a user then processes the messages in causal order, applying Causal

TreeKEM state changes and delivering decrypted plaintexts to the application layer.

A detailed specification, including precise message formats and pseudocode for the patch-

ing with hash chaining protocol, can be found in Appendix B.
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5.4 Properties

Our unified protocol broadly achieves the design goals listed in Section 5.1. We now

describe some of its specific properties.

Functionally, the protocol delivers application plaintexts to the application layer in causal
order. It allows for multiple forms of communication, including multiple servers and direct
peer-to-peer connections. It is also asynchronous, and it is efficient: encrypted messages
have small overhead, state change messages have size logarithmic in the group size, and

gossiping is round- and communication-efficient.

For security, the protocol achieves strong confidentiality and integrity properties, in-
cluding post-compromise security. It also guarantees author authentication, participant

consistency, and consistent causal broadcast, even in the face of malicious servers or users.

However, there are some desirable properties that the protocol does not yet achieve.
These are good areas for future work. One issue is that malicious users can still launch a
denial-of-service attack due to limitations of Causal TreeKEM, which are inherited from
ordinary TreeKEM. Specifically, they can send a bad Update message that does not allow
all users to learn the new shared keys. Preventing this is an area of active research [40].
For now, it does hold that a user affected by such an attack can expose the malicious

user.

Another missing property is forward secrecy. Users cannot delete their old Causal
TreeKEM keys until they are sure that they have received all concurrent state change
messages, which may take an arbitrary amount of time. These old keys can be used, to-
gether with a past compromise, to read old messages. Even without a past compromise,
we cannot achieve forward secrecy at the granularity of individual messages by using de-
terministic key ratcheting and deleting message decryption keys, as described in Section
3.3. This is because a malicious user may send multiple messages with the same number,
hence the same encryption key. A lack of forward secrecy may be acceptable for secure

collaboration, since users will likely store a full plaintext history anyway.

Finally, the protocol does not have metadata confidentiality. Currently, the message
ordering and authors are visible to non-users, such as the server. However, fixing this
seems technically difficult; in particular, to ensure transcript consistency, newly added
users need to be able to see this metadata for recent messages that they should not be

able to decrypt, precluding metadata encryption.
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5.5 Summary and Related Work

In this chapter, we presented a secure group messaging protocol meeting the require-
ments of CRDT-based collaboration. The protocol allows for flexible, asynchronous, and
efficient communication, and it achieves strong security properties even in the face of

malicious servers or users.

Ignoring the cryptographic properties, our protocol is an example of a gossip protocol for
optimistic replication. See Saito and Shapiro [41] for a survey on this topic. Patching
with hash chaining solves a special case of the set reconciliation problem introduced by
Minsky et al. [42], in which two agents wish to merge a set with minimal communication.
In our case, we have extra structure given by the partial order on the message set, which
allows our protocol to be communication-efficient while avoiding the high computational

complexity of existing set reconciliation protocols.

A few works on distributed systems use hashes to ensure consistent causality tracking in
a gossip protocol, starting with Summary Hash History (SHH) [33, 43]. SHH does not
include a practical set reconciliation mechanism. Patching with hash chaining is instead
closely based on the Depot distributed key-value store [17], including in its use of a binary
search to resolve forks. We make some optimizations for the messaging setting, such as
using a list of direct causal predecessors instead of full version vectors in every message,

since version vectors have size linear in the group size.
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Chapter 6
Conclusion

End-to-end encryption improves users’ privacy by reducing the trusted computing base,
eliminating the need for users to trust servers’ confidentiality. However, it has not yet
spread to collaborative applications, such as Google Docs. CRDTs make it possible to
extend end-to-end encryption to these collaborative applications by building on top of
a secure group messaging protocol. However, existing secure group messaging protocols
lack necessary properties for this task, and they do not minimize the trusted computing

base as much as they could.

This dissertation investigated secure group messaging for the purpose of supporting end-
to-end encrypted asynchronous collaborative applications. First, a taxonomy of existing
protocols was developed by dividing them into largely interchangeable parts. Based on
a gap identified from this taxonomy, Causal TreeKEM was created as a new protocol
for managing encryption keys in a dynamic group without a central server. Finally, by
combining Causal TreeKEM with protocols identified in the taxonomy, a secure group
messaging protocol was designed meeting the requirements of CRDT-based collaboration.
In particular, the protocol delivers messages in a consistent causal order to all users even
in the face of malicious servers or users, supports dynamic groups, and does not require
a single central server. Thus this dissertation is an important step towards developing
end-to-end encrypted asynchronous collaborative applications with a minimal trusted

computing base.

For future work, it would be interesting to improve the final protocol so that it is denial-of-
service resistant even in the face of malicious group members. Additionally, it is desirable
to add forward secrecy and metadata confidentiality, although these appear technically
difficult to achieve.

The next major step towards end-to-end encrypted applications is to implement an ap-

propriate secure group messaging protocol, such as this dissertation’s final protocol, and

53



integrate it with a CRDT library, such as Automerge!. However, converting secure pro-

tocol specifications into secure implementations is a difficult software engineering task.

'https://github.com/automerge/automerge
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Appendix A

Dynamic Groups and Security
Proofs for Causal Tree KEM

We now continue our discussion from Chapter 4 by elaborating on Causal TreeKEM.

A.1 Dynamic Groups

A.1.1 Blank Nodes

As in TreeKEM, we allow blank nodes. The private and public key of a blank node are
undefined.

We adopt the following rules for blank nodes:

e A state change message that sets a node to blank overrides all concurrent updates to
that node’s key pair, i.e., any state change message that is not a causal predecessor
Or SUCCEeSSOT.

e When computing the ratchet tree of a configuration that includes a state change
message involving blanks, we treat the total contribution, of that message and all
of its causal predecessors, towards the key pair at any node where it is blank, to
be some fixed constant value. In other words, a blank overwrites prior keys with a
constant value instead of combining with them. A natural choice for the constant
value is the identity of %, if it exists.

These rules have essentially the same effect as the rule, in the totally ordered update
case, to always process concurrent Update messages before messages that introduce blank
nodes, namely, Adds and Removes. Such a rule is mentioned in the Messaging Layer
Security working draft [23, §8].

A.1.2 Removing Users

We define a Remove message to contain:
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e A list of the removed users.

e A new secret value s, encrypted under various node public keys such that it can be
decrypted by the remaining users only.

For example, if a single user is being removed, then s is sent encrypted under the pub-
lic keys in (the resolutions of) the removed user’s copath nodes, similar to ordinary
TreeKEM’s approach but without KDF applications. At the opposite extreme, if users
at alternating leaves are being removed, then s is sent encrypted under the leaf public
keys of the remaining users.

Each user processes a Remove message as follows:
e Decrypt s and combine DKP(s) with the root key pair using *.
e Delete the removed users’ leaves and set all of their direct path key pairs to blank.

See Figures A.1-A.2 for an example.
g g %1 priv(s)
e f e _

A:a B:b C:c D:d A:a B:b D:d

Figure A.1: Removing a user in Causal TreeKEM. Here A removes C' with secret s.

Encpub(b) (S>7 Encpub(d) (S)

Figure A.2: The Remove message corresponding to the removal in Figure A.1. Here
Enck(x) denotes the encryption of z under the public key K.

Note that after concurrent Remove messages, the resulting root private key is unknown
to any removed user, but two users removed in different messages can work together to
determine the root private key. This issue is noted by Bhargavan et al. but not addressed
by them [36, §5].

To resolve this issue, we require: if a user wishes to use their current group state, either
to encrypt a communication or to generate a state change, after processing concurrent
Remove messages, then they must first send a Remove message that removes the union
of the concurrent messages’ removed sets. This has the effect of sending a new secret to
the remaining users only. (The same approach could be used with ordinary TreeKEM.)

Update messages concurrent to a Remove message are processed as usual, noting that
their non-root private key contributions might be overwritten by blanks. Because they
still contribute to the root private key, we intuitively expect to get the usual post-
compromise security guarantee.

To prevent a removed user from altering the group state, we adopt the rule that no user
will process an Update message from a removed user, unless another user generates a
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state change message that causally depends on it, presumably because they had not yet
received the Remove message. Note that any Update messages that do get processed for
this reason are harmless, since they cannot undo the Remove message’s contribution to
the group state.

Remark A.1.1. There remain issues with adjudicating concurrent membership changes,
e.g., handling two users who remove each other, allegedly concurrently (but possibly
actually one in response to the other). These seem orthogonal to the topic at hand.

A.1.3 Adding Users

A user U adds a user V as follows. First, U generates an Update message u but does not
send it. Next, U sends a Welcome message to V' containing:

(i) The current set of group members.

i) The root private key and pubhc key tree for the ratchet tree resulting after U
g
processes u.

(iii) U’s direct path private keys in the ratchet tree of (U,S), for any configuration S
such that there may exist a state change message, concurrent to the Add message
(below), whose set of causal predecessors is S. Note that the direct path private
keys exclude the root private key. (This information can be compressed by including
the keys from some fixed configuration contained in all such S, plus the keys from
all subsequent individual state changes, from which V' can compute the keys for all
S using *.)

This Welcome message is sent encrypted under a public key that V' has designated for
use in encrypting Welcome messages to them. This public key could be a signed prekey
that V previously uploaded to an untrusted server.

To process the Welcome message, V' uses (i) and (ii) to set its initial state. V' also
stores (iii) so that V' can decrypt the root private key contribution of any state change
messages concurrent to its Add message (below), acting as if it is U, and combine those
contributions with its root private key using x;. This is necessary because concurrent
root private key contributions will be combined into future root private keys using *; in
the usual way, but they do not contribute to the root private key in (ii).

U then sends an Add message to the group, including V', containing u and a public key
that V has designated for use as an initial leaf public key. This public key could be a
second signed prekey. Every user except V processes u as a normal update. Every user,
including V', then:

e Adjusts the tree structure to accommodate a new leaf for V' while keeping it left-
balanced.

e Sets all key pairs on V'’s direct path to blank, then sets Vs leaf’s public key to that
in the Add message. Note that the root is not set to blank.

See Figures A.3—A.4 for an example.

By our rules for blank nodes, the effect of any concurrent Update message is to adjust
nodes outside of V’s direct path as usual, including the root node, while changes to
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Arad1x;N%1z;N H:h

Figure A.3: Adding a user in Causal TreeKEM. Here A adds H with initial leaf private

key h and update node secrets 21", 2V, 2 starting from the end state of Figure 4.13.

() A B,C.D.
(ii) g% 2 xyd x zI¥; public keys from end state of Figure A.3.
(i) o S=0: a,e
e A’s update from Figure 4.13: z{’, zl
e B’s update from Figure 4.13: vy

Figure A.4: The Welcome message corresponding to the addition in Figure A.3. Here
Enck(x) denotes the encryption of x under the public key K.

nodes on V’s direct path will be overridden by the Add message’s blank nodes. Thus
we intuitively expect to get the usual post-compromise security guarantee for such an
Update message. Note that V' can decrypt the Update message’s contribution to the root
key pair using (iii) from the Welcome message.

An exceptional case is when V’s Add message changes a concurrently updating user’s
location in the tree, either because they convert the updating user’s old leaf into its new
parent or because of concurrent Add messages (see below). In this case, we adopt the
rule that the updating user’s originally intended contribution to the root stands. That
is, if the updating user generated a new secret s and they were originally at depth n in
the tree, then the root key pair contribution is

DKP(KDF"™ (s, “path”, ..., “path”, “node”),

where we have listed the second inputs to all n + 1 KDF applications in their order of
application. We do this because all users can compute that contribution in the usual way,
while they may not be able to compute

DKP(KDF"(s, “path”, ..., “path”, “node”)
if the updating user’s depth decreases to n — 1.

Concurrent Add messages work essentially the same as an Update message concurrent to
an Add message. The exception is if concurrent Add messages attempt to insert multiple
users at the same leaf node. We adopt the rule: users process concurrent Add messages
in some fixed order, e.g., lexicographically by name.

This works because neither the Add nor Welcome messages for a new user include any
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information that is specific to the leaf where they are added. Update messages which
depend on an Add message may become nonsensical due to concurrent Add messages, in
that they do not encrypt path secrets to the correct users, but any non-root key pairs
affected by this will be overridden by blanks from the concurrent Add messages. Note
that every user can still compute the root private key contribution from such an update.

A.2 Security Properties

In this section, we present security proofs for Causal TreeKEM. However, these proofs
are not complete because there are currently no published security proofs for ordinary
TreeKEM.

We consider passive network adversaries who also have the ability to compromise users,
but who cannot actively interfere except to delay message receipt. We assume that users
process state change messages in causal order regardless of the adversary’s actions.

A.2.1 Post-Compromise Security

The post-compromise guarantee that we want is as follows. Let U be the set of users who
have been compromised before a given point in time. Suppose there is a series of Update
messages m; < my < --- < myy| such that:

e Each m; was generated after the moment in which its author’s most recent com-
promise occurred.

e The set of authors of my, ..., my equals U.

There may be any number of intervening or concurrent updates. Then the private keys
in the ratchet tree of any user who has processed m,y;| are unknown to the adversary.

We now define security games to make our guarantee precise, inspired by the proof of
ART’s security [27]. In these games, we assume that the root public key is never sent on
the network, so that we can reason about the root private key’s secrecy.

Let Adv; denote the maximum over all polynomial-time adversaries A of the advantage
of A in Game i, i.e., the probability that A wins Game ¢ minus 1/2.

Definition A.2.1. Let C be a set of user configurations, and let T" be a configuration. A
set of users U is fresh at T" w.r.t. C if there is a sequence of Update messages m; < my <
-+ < my in T such that for every A € U and every (A, S) € C, there is an m; authored
by A with m; ¢ S. A ratchet tree node N is fresh at T w.r.t. C if the set of users with a
leaf descended from N is fresh w.r.t. C.

Game 1 (Security Game for Causal TreeKEM with Static Groups). Fix a number of
users n and a maximum number of Update messages M. The challenger initializes a
group of size n with random key pairs at each node in the ratchet tree. The adversary
makes a series of queries of the form:

e Send(A), where A is a user: Instruct A to generate an Update message, apply it
to its own state, and give it to the adversary.
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o Recu(A,m), where A is a user, m is the output of some call to Send, A has processed
all of m’s causal dependencies, and A has not yet processed m: Instruct A to process
the Update message m.

e Reveal(A,S), where A is a user, S is a set of outputs from calls to Send that form a
configuration, and A has previously processed all messages in S: Reveal the ratchet
tree for the user configuration (A4, .S).

o Test(T), where T is a set of outputs from calls to Send that form a configuration:
the challenger sets kg to be the root private key of T', sets k; to be a uniformly
randomly sampled private key, chooses b € {0, 1} uniformly at random, and returns
ky.

o Guess(b') where b’ € {0,1}: This terminates the game.

The adversary wins if they call T'est exactly once, say with input 7", they guess b’ = b, the
root node is fresh at T w.r.t. the set of all user configurations revealed by the adversary,
and they call Send at most M times. Otherwise, they lose.

Remark A.2.2. The adversary should also have the ability to compromise the secrets
contained in state change messages. From Causal TreeKEM’s perspective, compromising
such a secret is at most as bad as compromising some user’s state immediately before
and after sending the message, so we will be satisfied with just Reveal queries.

Game 2. Same as Game 1, but the adversary must specify at the start of the game the
order in which they intend to make queries to Send and Recv, the user configurations
on which they will call Reveal, and the configuration on which they will call Test. The
inputs to Recv, Reveal, and Test are expressed in terms of the calls to Send that will
generate them. If the adversary violates this specification, they lose.

In other words, the adversary must specify at the start of the game the causal dependency
graph of Update messages that they will construct, plus the user configurations in the
graph that they will reveal and the configuration in the graph that they will guess.
We refer to the messages in this specification as abstract messages, since they represent
Update messages but have not yet had their random values filled in.

Lemma A.2.3. There is a non-tight reduction from Game 1 to Game 2, proving that
Advy is at most Adve multiplied by a (large) function of n and M.

Proof. Let us be given an adversary A for Game 1 with parameters n and M. We define
an adversary A’ for Game 2 which first guesses the required information, then plays as
A. If its guess turns out be wrong, A’ plays a trivial strategy that wins with probability
1/2. The advantage of A’ is that of A times the probability that its guess is correct,
which is the inverse of some (large) function of n and M. O

Definition A.2.4. Define a partial ratchet tree to be a tree in which every node is labelled
with a key pair, a public key, or null. We denote the label of a partial ratchet tree T at
a node N by Ty. Given two partial ratchet trees 7,U with the same shape, define their
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product T xU to be the partial ratchet tree whose label at a node N is given by

((kT,KT) * (ky, Ky) if (k, K1) = T, (ku, Ky) = Uy are both key pairs

K *9 Ky if one of Ty,Uy is a public key,
(T %)y = the other is a public. key 01j key pair,
and Kp, Ky are their public keys
TN if Uy is null (Ty may also be null)
(Un if Ty is null.

Given an Update message m, define the partial ratchet tree of m to be the partial ratchet
tree that has every key pair that m contributes (i.e., the key pairs on its author’s direct
path plus the root) and is null elsewhere in the tree.

Game 3. Game 2 with two modifications:

e The order that the adversary commits to must be a total order on Update messages
that all users agree on. That is, whenever the adversary calls Send(A) and receives
an Update message m, they must call Recv(B,m) for all other users B before they
call Send again.

e The adversary has an additional oracle:

— StarIn(T), where T is a partial ratchet tree with the same shape as the users’
ratchet trees and every node in 7 is labelled with a key pair or null (not
a public key): Instruct every user to update their ratchet tree U by setting
U—UT.

For any choice of starting information I for Game 2, let Game 2.1 denote a modified
version of Game 2 in which the adversary must specify starting information I or lose,
and let Advs ; denote its advantage. We similarly define Game 3.J and Advs_;.

Note that any maximum-advantage adversary for Games 2 or 3 can be converted into an
adversary who deterministically chooses its starting information, with the same advan-
tage. Thus it suffices to reason about the advantages of Games 2.1 and 3.J as [ and J
vary.

Lemma A.2.5. For any I with n users and < M Update messages, there is a J with n
users and < M Update messages such that there is a tight reduction from Game 2.1 to
Game 3.J, proving that Adve; = Advs .

Proof. Let us be given an adversary A for Game 2.I. We assume A and [ are such that
A never trivially fails by violating rules such as freshness.

Let (P, <) be the partial order on abstract messages determined by I, i.e., the causal
dependency graph that A plans to construct. From I, we can find a sequence of abstract
messages a; < as < --- < a; in P that witnesses the freshness of the configuration 7" on
which A will call Test. Let C' = {ay,...,a;} C T. From the total order C, we can derive
a sequence of Send and Recv queries meeting the requirements of Game 3. Let J be
given by: the order of Send and Recv queries is that given by C; the Reveal queries are
those of I but with their configurations intersected with C'; and the T'est configuration
isC=CnNT.
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We now define an adversary A’ for Game 3.J. A’ poses as a challenger for Game 2.1 and
plays against A, processing the queries of A’ as follows.

e Send(A): Let P’ be the set of (abstract) messages generated by previous calls to
Send. Let a be the unique abstract message authored by A such that a ¢ P’ but all
of a’s causal predecessors are in P. (Uniqueness holds because A always includes
all of its prior messages as causal predecessors of its next message.)

If a ¢ C, compute the tree T of public keys in the ratchet tree of the configuration
{m' | ' € P,d’ < a, d is the abstract message for m'}. Then generate an Update
message m with author A using public keys from 7, using a random secret, and
give this message to the adversary.

If a € C, let R C P’ be the set of messages m' for which A has called Recv(A, m').
Let a’ be the predecessor of a in C, and let Q = {a” € R | d" ¢ C,a” £ a’}. (In case
a is the minimum element of C', we set Q = R\ C.) Note that by the previous case,
A’ knows the private keys in every key pair that appears in an Update message in
Q, since Q N C = (. Let T, be the product of all partial ratchet trees for Update
messages in ). In Game 3.J, query StarIn(7;), then query Send(A) and give its
result to A.

o Recu(A,m), where A is a user, m is the output of some call to Send, A has processed
all of m’s causal dependencies, and A has not yet processed m: If m was generated
by a call to Send that reached the second case above, query Recv(A, m) in Game
3.J.

e Reveal(A,S), where A is a user, S is a set of outputs from calls to Send, and A
has previously processed all messages in S: Query Reveal(A, S N C) in Game 3.J.
Interpret the answer as a partial ratchet tree 7. Let 7' be the x-product of 7 with
every partial ratchet tree of an Update message in S\ C. Give T’ to A.

e Test(T), where T is a configuration: Query Test(C) in Game 3.J; let k be the
result. Let T be the product of every partial ratchet tree of an Update message in
T\ C, and let [ be its root private key. Give k %1 [ to A.

o Guess(b') where ' € {0,1}: Query Guess(V') in Game 3..J.

Essentially, we are using StarIn to simulate the effects of the messages in P\ C. Note
that because x; is cancellative, the guess by A will be correct if and only if the guess by
A’ is correct. To complete the proof, one checks that C', the input to Test, is fresh in
Game 3.J because T is fresh in Game 2.1. n

Corollary A.2.6. There is a tight reduction from Game 2 to Game 3, proving that
AdUg S Ad’Ug.
Game 4. Game 2 with two modifications:

e The order that the adversary commits to must be a total order on Update messages
that all users agree on. That is, whenever the adversary calls Send(A) and receives
an Update message m, they must call Recv(B, m) for all other users B before they
call Send again.

e We use ordinary TreeKEM in place of Causal TreeKEM.
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Game 4 should be essentially the security game for ordinary TreeKEM, but with the
adversary constrained to choose its Update message order, Reveal queries, and Test
configuration at the beginning of the game. We expect that any reasonable proof of
TreeKEM’s security would imply that Adv, is negligible.

The only difference between Games 3 and 4 is that at various points in time, each user
replaces their ratchet tree with the x-product of that ratchet tree and some other partial
ratchet tree. Sometimes this partial ratchet tree is provided by an adversary through
StarIn; sometimes it comes from past state, since Causal TreeKEM processes Update
messages using * instead of overwriting. FEither way, because %; is cancellative, these
products should not affect which private keys are secret to an adversary. Thus we expect
that we could modify a proof that Adv, is negligible to prove that Advs is negligible, so
that Causal TreeKEM is secure if ordinary TreeKEM is secure.

Remark A.2.7. Since internal nodes have their public keys revealed, we cannot reason
about indistinguishability of their private keys from random. We may need to instead
make some computational hardness assumption about 1, e.g., if it is hard for an adversary
to compute y, then it is also hard to compute x given z x; y. This follows from the
cancellative property of x; if it is easy to invert, since one can use z, x *; y, and an
inversion algorithm to compute y.

A.2.2 Forward Secrecy

In the discussion so far, we have implicitly assumed that users keep around all of the state
change messages they have received forever, so that they can process arbitrarily delayed
state change messages. Doing so should not harm the forward secrecy of application
secrets: users need only store the node secrets of non-root nodes, and application secrets
cannot be derived from these so long as users delete the corresponding path secrets.
However, we have not rigorously evaluated forward secrecy.

A.2.3 Adding Users

The procedure for adding users is rather suspicious because it requires the adder to give
away a good deal of private key material to the new user. In this section, we discuss why
this is not a serious concern.

First, we address forward secrecy with respect to the added user. This means that the
added user should not be able to read any communications that do not causally depend
on their Add message.

Proposition A.2.8. Suppose a user A adds a user B. Let S be a configuration that does
not include the Add message, and let s be the root private key of S. Assume that the root
private key contributions of the messages in S and the group’s initial root private key are
all independent and uniform random. Then as a random variable, s is independent of the
private keys in parts (ii) and (iii) of B’s Welcome message.

Proof. First, write s = v x; w, where v is the group’s initial root private key and w is
the combined contribution of all messages in S. By our independence assumption, v is

independent of w and of part (iii) of B’s Welcome message, since (iii) does not include
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any root private keys. Since v is uniform random and *; is cancellative, regardless of w,
s is independent of (iii).

Next, let z be the root private key in part (ii) of the Welcome message. Write x = y* 2,
where y is the root private key contribution of the Update message u used to generate the
Welcome message, and z is the root private key of the preceding configuration. By our
independence assumption and the assumption that S does not include the Add message,
y is independent of z and s. Then x is independent of s, i.e., s is independent of the
private key in (ii).

Finally, by the same reasoning as in the first paragraph, the private key z in part (ii)
is independent of part (iii). Hence s, (ii), and (iii) are mutually independent, so s is
independent of the private keys in (ii) and (iii) considered together. O

Thus B can only determine s by breaking Causal TreeKEM, so long as KDF' generates
outputs that are indistinguishable from random. Note that this proposition does not help
us if B compromised the group’s initial root private key at some point; in principle, we
should be able to prove a similar security result even if B has previously compromised
some private keys.

A second concern with our protocol for adding users is its interaction with forward se-
crecy and post-compromise security: what happens if an adversary who already possesses
some secret information gets hold of a Welcome message, either by compromising B or
colluding with them? Note that such a compromise is at most as bad as if the adversary
compromised A. In most update schedules, we expect that all users will store roughly the
same amount of old state, for the purpose of decrypting late messages. Thus an adversary
who compromises B learns at most as much as they would from compromising any other
user. This seems acceptable.

In addition, compromising B does not give the adversary any private keys from the Add
message’s key update u, except the resulting root private key. Hence it appears that if
B is compromised, revealing the Welcome message, then only B has to do a key update,
not A. Thus we still get intuitive post-compromise security guarantees.

Finally, there may be issues if prekeys are reused in different conversations. Prekey reuse
should be avoided if possible, but we cannot assure it asynchronously. If A gives away
its initial leaf private key in an Add message in one conversation, and A is still using
that leaf private key in another conversation, then A should send an Update message in
the second conversation. Also, it is important that users designate which prekeys are for
initial leaves and which are for Welcome messages, as we have described. If A gives away
an initial leaf private key in one conversation that doubles as a Welcome encryption key
in a second conversation, then the recipient automatically compromises A’s initial state
in that second conversation, allowing them to read early messages.
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Appendix B

Group Messaging for Secure
Collaboration: A Unified Protocol

We now give a detailed description of the protocol described in Chapter 5.

B.1 Terminology

We use message to mean a piece of data to be broadcast to the group members. Messages
already use any necessary encryption and include any necessary metadata, so that they
can be sent directly on the network. In contrast, we use application plaintext to mean a
piece of data at the highest layer, i.e., a piece of data broadcast by a user’s application
layer to the other users’ application layers. There are two types of messages:

e An application message encapsulates an encrypted application plaintext.

e A state change message encapsulates a Causal TreeKEM state change, i.e., a group
initialization, key update, add, or remove.

We give precise formats for these message types in Sections B.3 and B.4.

A user assigns each message that they author a number, starting at zero and counting
up. The description of a message consists of its author, number, and hash, where the
hash is a cryptographic hash of the entire message. Barring hash collisions, descriptions
uniquely identify messages, even if users act maliciously.

When defining message formats below, we include in each message a field called prede-
cessor info, which consists of a list of descriptions. This defines a relation <’ on
messages in which m <’ m’ if the description of m appears in the predecessor info of
m’ We take < to be the transitive closure of <’, and we say m is a predecessor of m’
if m < m/. We say m is an immediate predecessor of m' if m is a maximal element of
{m" | m"” < m'}. When all users are honest, < coincides with the causal order; in general,
users may maliciously omit direct causal predecessors in a message’s predecessor info,
so that < is a suborder of the causal order.

We also include in each message a field called previous hash, which consists of a hash,
unless the message has number zero. We define the previous message of a message m
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to be the message with the same author as m, number one lower, and hash given by
previous hash.

A peer is either a user in the group, or a non-user who participates in the protocol to
transmit messages between users, such as a server.

B.2 State

Each peer maintains an accepted set of messages. Informally, these are the messages
that the peer has already processed, e.g., by delivering their application plaintext to the
application layer. The accepted set starts out as the singleton set containing the state
change message corresponding to Causal TreeKEM’s group initialization message.

We assume any honest peer’s accepted set satisfies the following invariants.

(i) Let m be in the peer’s accepted set. Then for every description in m’s predecessor
info, there is a message in the accepted set with that description. In addition, if
m has number greater than zero, then the previous message of m is in the accepted
set, i.e., there is a message with the same author as m, number one lower, and hash
given by previous hash.

(ii) The relation < restricted to the accepted set is a partial order, i.e., there are no
cycles.

(iii) In the relation < restricted to the accepted set, no message is greater than a message
with the same author and with greater or equal message number.

(iv) Every message is correctly formatted.

(v) If the peer is a user, then every message’s plaintext signature (defined below)
is a valid signature by the message’s author, and any state change message can
be processed without error, i.e., its confirmation is correct. Note that we do not
require that application messages have a valid AEAD field, so that recently added
users can check this property even for messages that they cannot decrypt.

Each user additionally maintains the state needed for Causal TreeKEM. This state in-
cludes long-term public signature keys for each user; how users learn these public keys is
out of scope.

B.3 Application Messages

Application plaintexts are converted into application messages using a scheme similar to
the one described in the MLS protocol draft [23, Section 9.2], but with additional causal
predecessor information and a plaintext signature.

Specifically, we define the application message corresponding to application plaintext
to be
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group ID, author, number, previous hash, predecessor info,
AEAD (key, nonce, application plaintext | encrypted signature, group
ID | author | number | predecessor info), plaintext signature,

where:

group ID is a public value that uniquely identifies the group to each user.
author is an identifier of the author within the group.
number is the message’s number.

previous hash is the hash of the message by this author with number one lower,
i.e., this message’s previous message. If number is 0, this is omitted.

predecessor info contains a description of each maximal message in the author’s
accepted set under <, i.e., this message’s direct causal predecessors.

encrypted signature is a signature of group ID | author | number |
previous hash | predecessor info | application plaintext under the au-
thor’s long-term signature key.

AEAD refers to an Authenticated Encryption with Associated Data scheme [9]. We
treat this as a function which inputs a symmetric key, a nonce (a unique value
used alongside the key to prevent cryptanalysis), plaintext, and associated data,
and outputs a ciphertext that encrypts and authenticates the plaintext under the
key, and authenticates the associated data under the key without encrypting it.
By “authenticate under the key”, we mean that anyone possessing the key can
verify that the ciphertext’s author used that key to generate the ciphertext, and
the ciphertext has not been tampered with since then. Here we write the arguments
to AEAD in the order: symmetric key, nonce, plaintext, associated data.

key and nonce are the symmetric Causal TreeKEM key and nonce corresponding
to the Causal TreeKEM state induced by the accepted set, as described in Section
4.4.

plaintext signature is a signature of the rest of the message under the author’s
long-term signature key.

The above format differs from MLS’s ApplicationMessage in that we use number and
predecessor info in place of MLS’s epoch and generation numbers. Those numbers
rely on MLS’s linear ordering, and they do not check transcript consistency. Also, we add
plaintext signature, while MLS includes only encrypted signature. Because there
are no published security proofs for MLS, it is unclear whether we can omit encrypted
signature.

B.4 State Change Messages

As with application messages, we convert Causal TreeKEM’s state changes into messages
using a scheme similar to the one described in the MLS protocol draft [23, §7], but with
additional causal predecessor information.
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Specifically, we define the state change message corresponding to a Causal TreeKEM
state change sc to be

sc, author, number, previous hash, predecessor info,
plaintext signature, confirmation,

where:

e author, number, previous hash, and predecessor info are the same as for ap-
plication messages.

e plaintext signature is a signature, under the author’s long-term signature key, of
the transcript hash of all state changes up through and including sc. We define the
transcript hash analogously to the transcript_hash in MLS [23, §5.7]. Specifically,
the transcript hash of sc is a hash of

transcript hash of sc;, ..., transcript hash of scj, sc,

where scq, ..., sc, are the maximal elements under < of the accepted set’s subset
of state change messages, taken in lexicographic order.

e confirmation is
HMAC(key, transcript hash | plaintext signature),

where key is the Causal TreeKEM confirmation key' resulting from sc, and HMAC
is a message authentication function [44]. confirmation authenticates this state
change message, proving that its author is a group member and that the message
has not been tampered with by a non-group member.

Note that sc includes the group 1D, so we do not include it explicitly, unlike for application
messages.

B.5 Adding Users

When adding a user, the adder must send some extra information to the added user
along with Causal TreeKEM’s Welcome message (Section A.1.3). Specifically, they must
send the description of any message that may appear in the predecessor info of a state
change message concurrent to the added user’s Add message. This allows the added user
to ignore messages that contain non-existent messages in their predecessor info, like any
other user. Otherwise, the added user may accept application messages that other users
ignore, violating transcript consistency of the application plaintexts. Additionally, the
adder must send the confirmation key contributions for previous state change messages,
so that the added user can compute the confirmation key of future state change messages.

IThis is a secret derived from each configuration in addition to the application secret. Specifically,
from each state change’s root secret contribution, we derive a confirmation contribution; the confirmation
key of a configuration S is the x;-combination of the confirmation contribution from all state changes in
S.
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B.6 Patching with Hash Chaining

In this section, we introduce the protocol patching with hash chaining. This is the peer-
to-peer message exchange through which all group communication occurs.

Overview The goal of a patching with hash chaining interaction is for two peers to
merge their accepted sets. That is, after a patching with hash chaining interaction be-
tween two honest peers, both peers’ accepted sets become the union of their original
accepted sets, except that if one peer is a user and the other is not, the user’s set of
accepted messages will omit invalid messages. Additionally, whenever an honest peer
interacts with any peer, even a malicious one, patching with hash chaining preserves the
invariants from Section B.2.

The core of the protocol is described in Section 5.3. It remains to give a more precise
description of how users resolve forks.

Recursively define the chain of a message m to be m itself if m has number 0; else it is the
chain of m’s previous message followed by m. Thus the chain of m is a linearly ordered
suborder of the predecessor order consisting of messages by the same author as m, with
number going from 0 to that of m. Furthermore, barring hash collisions, the chain of a
(valid) message is unambiguously defined, even in the presence of malicious users.

Two peers who encounter a fork, by identifying two messages with the same author and
number but different hashes, merge the chains of the two messages, then exchange all
messages that causally depend on previously missing messages. This resolves the fork.
The peers merge their chains by doing a binary search on each others’ chains to identify
precisely which messages they are missing, taking advantage of the linear orderings.
Letting M be the number of missing messages caused by a fork, resolving the fork in this
way requires at most 4log,(M) + O(1) rounds, and only O(log(M)) communication in
excess of the communication used to send the missing messages.

The Protocol Two peers A and B perform patching with hash chaining by following
the protocol in Figure B.1, using the protocol in Figure B.2 as a subroutine.

In an implementation, it is important to prevent one patching with hash chaining instance
from blocking another. This can be done by making a copy of the accepted set for
each protocol run and merging the results into the real accepted set when it finishes.
Otherwise, a malicious peer can perform a denial-of-service attack on another peer by
leaving a protocol run open for a long time.
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Protocol PatchWithHashChaining(A: peer (initiator), B: peer):
1. A sends B a vector d containing, for each user in the group, the maximum
number of a message by that author in A’s accepted set. As an optimization,
A may omit numbers that have not changed since the last time they patched
with B.
2. B likewise sends A a vector b. B also sends any messages in its accepted set
whose number exceeds A’s number for the corresponding author. Additionally,
B sends the description of any maximal message in its accepted set that it has
not just sent. As an optimization, B may omit numbers that have not changed
since the last time it patched with A or that are at least A’s number.
3a. A likewise sends B messages and descriptions.
3b. A first checks that every received message satisfies invariant (iv), and if not, it
fails. A then arranges its received messages and its accepted set into a directed
graph, with an edge to a message from each of the messages referenced in
its predecessor info plus the message referenced in previous hash. If this
graph has a cycle, or if invariant (iii) is violated, A fails. If some description
does not have a corresponding message in A’s received messages or accepted
set, A applies procedure F'ix below to the description. If Fiix fails, A fails, else
it adds the messages received during Fix to its received set and goes to the
beginning of this step.
3c. Once all descriptions reference messages that A has, A processes the received
messages in predecessor order. To process a message m, A does the following.
If A is a non-user, A merely adds m to its accepted set. If A is a user, it
checks invariant (v) for m; if the invariant is false, A deletes m and all of
its successors from the set of received messages. (As an optimization, if A
is a non-user but knows the public signature key of m’s author, they may
check plaintext signature.) Otherwise, A adds m to its accepted set. If
m is a state change message, A applies it to the encryption key state. If m
is an application message for which it has the decryption key, and the AEAD
authenticator and encrypted signature are valid, then A decrypts m and
delivers its application plaintext to the application layer.
4. B likewise performs steps 3b—c. This can be done in parallel to A’s step 3b—c,
once B receives the data from step 3a.

Figure B.1: Protocol PatchWithHashChaining. Numbers indicate rounds. We allow a
peer to fail, in which case it terminates the protocol.
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Protocol Fix(A: peer (initiator), B: peer, (C,n,h): description):

If n > de (where @ is from round 1 of PatchWithHashChaining), A fails. Else A
has some message m’ in its accepted set with description (C,n,h'), where h’ # h.
Assuming B is honest, its accepted set likewise contains a message with description

(C,n,h) for some h # h'.

A now attempts to identify the first message in the chain of m’ that B lacks. It
does this using a top-down binary search followed by a bounded binary search.
Specifically, A first sends the hash of message number n in the chain of m’ (i.e., the
hash of m’ itself), to which B responds “have” or “not have”. If B responds “not
have”, A does the same for message numbers n — 2° n — 2!, etc., until B responds
“have” or A reaches message number 0. If A reaches message number 0 and B still
replies “not have”, then the first message in the chain of m’ that B lacks is number 0.
If B responds “have” to some n — 2%+ but not to n — 2%, then A and B do a similar
binary search in the range (n — 2*1 n —2*], eventually finding the first message that
B lacks. A then sends that message and all greater messages in the predecessor order.

The above paragraph also runs in parallel with A and B switched.

Figure B.2: Protocol Fix. We allow a peer to fail, in which case it terminates the protocol.
There is an analogous protocol with A and B switched, using b in place of a.
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