
TreeKEM:

Asynchronous Decentralized Key Management

for Large Dynamic Groups

A protocol proposal for Messaging Layer Security (MLS)

Karthikeyan Bhargavan
Inria Paris

Richard Barnes
Cisco

Eric Rescorla
Mozilla

May 3rd, 2018

Abstract

The Messaging Layer Security (MLS) architecture [OBR+18] envisions
a protocol that can establish a key shared by a group of members, where
each member controls a number of clients (devices). Each client is iden-
tified by its own long-term key, and can participate in the protocol asyn-
chronously, that is, without needing any other client to be online. Notably,
each client can issue asynchronous group modification requests to add new
members, remove members, and update its own keys, etc. The architec-
ture document also states a series of security goals for the protocol. We
begin this document by stating the desired functionality and security goals
of MLS in our own notation. We then propose a new protocol that seeks
to achieve the confidentiality goals of the MLS architecture.1

1 Global Group Messaging Functionality

The global state of the messaging system S consists of the following elements:

• G = {g0, g1, . . .}: a set of group identifiers

• D = {d0, d1, . . .} ⊆ G: a set of device identifiers

• members : G → 2D: a function from groups to their members

• secret key : G → Ks: a function from groups to secret key material

• public key : G → P: a function from groups to public key material

1This proposal was first posted on the IETF MLS Mailing List on May 3rd, 2018. See:
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8

1



For simplicity, we do not model the relationships between multiple devices
owned by the same user, and instead, we treat each device as an independent
group member. We treat each device as a singleton group that contains only
the device (D ⊆ G), and so we can write secret key(di) to mean the secret key(s)
known only to the device, and public key(di) for the corresponding public key(s).

Intuitively, the secret key of a group is only known to members of the group,
whereas all other components of the state are public. (We may wish to restrict
knowledge of group membership for privacy, but the above model does not
address such privacy goals.)

The global state evolves over time:

S0 −→ S1 −→ . . . −→ Sk −→ . . .

We write (Gk,Dk,membersk, secret keyk, public keyk) to refer to the components
of a global state Sk. A state transition from Sk to Sk+1 involves one of the
following group operations:

• create(di, g
′, {d0, . . . , dj}): the device di creates a new group g′ whose

members are d0, . . . , dj .
This operation results in a new state where g′ ∈ Gk+1\Gk, and membersk+1(g′) =
{d0, . . . , dj}, and secret keyk+1(g′) and public keyk+1(g′) are assigned. All
other groups in the global state remain unchanged.

• add(di, gj , d
′): the device di adds a device d′ to the group gj .

When di = d′ we call this a user-initiated add. Otherwise, we call this a
group-initiated add, and require that di ∈ membersk(gj). In both cases,
we require that {d′} = membersk+1(gj) \membersk(gj).

• remove(di, gj , d
′): the device di removed a device d′ from the group gj .

When di = d′ we call this a user-initiated remove (or a leave operation).
Otherwise, we call this a group-initiated remove (or evict operation) and
require that di ∈ membersk(gj). In both cases, we require that {d′} =
membersk(gj) \ membersk+1(gj). Note that while this notation implies
that all the users exist upfront, that need not be true in practice. We can
model a new user as one which previously existed but was never part of
any group other than its own singleton group.

• update(di, gj): the device di refreshes its local state and generates a fresh
group key for gj , hence updating secret keyk+1(gj) and public keyk+1(gj).

There is some overlap between the create and add operations, since cre-
ating a group and adding some members should have the same overall effect
as creating the whole group at once. In this discussion, we maintain the sep-
aration between the two because it is possible to perform a create operation
more efficiently than the corresponding sequence of add operations (as noted
in [BMO+18]).

In addition to the above group-modifying operations, each device can call
the following functions to exchange messages in the current state Sk (without
modifying the global state):

2



• sendk(di, gj ,m) 7→ c: the device di encrypts a message m to the group
gj , resulting in the ciphertext c.

• receivek(dl, gj , c) 7→ (di,m): the device dl ∈ membersk(gj) decrypts a
ciphertext c and extracts the message m and sender di.

Intuitively, if di ∈ membersk(gj) it uses an encryption key derived from the
secret group key secret keyk(gj) to encrypt the message. Otherwise it uses the
public key public keyk(gj). In both cases, the recipient must be a member of
the group and hence can decrypt using secret keyk(gj).

2 Threat Model and Security Goals

Our threat model includes both outsider adversaries who control the network
and can see all ciphertexts as well as insider adversaries who have compromised
some devices. We introduce a new operation that an adversary can call to
compromise a device in Sk:

• compromisek(di): the adversary compromises device di and thereby ob-
tains all the secret keys for the groups that di is a member of.

For now, we assume that the long-term authentication keys of di are not
affected by compromise; put differently, we assume that each device obtains,
stores, and manages the compromise of authentication credentials using some
(unspecified, out-of-band) mechanism. Hence, we assume that each message
sent by a device can be authenticated by other devices, even after the device
has been compromised. This is clearly an undesirable gap in our model, and
one we will seek to address as the authentication mechanisms of MLS evolve.

An MLS protocol that seeks to implement the global functionality specified
above must satisfy the following security goals:

Message Secrecy If device di invokes sendk(di, gj ,m) in a state Sk, and nei-
ther di nor any member of gj has been compromised (in the past or the
future), then m is kept confidential from the adversary.
Confidentiality can be formally expressed in many different ways. For ex-
ample, we can state that the adversary should not be able to obtain m, or
that the adversary cannot distinguish between m and some other message
m′ that may have been encrypted by di.

Message Integrity If device dl invokes receivek(dl, gj , c) to obtain (di,m) in
a state Sk where neither dl nor di is currently compromised, then di must
have previously invoked sendk(di, gj ,m) in the same global state Sk.

Forward Secrecy (FS) If device di ∈ membersk+1(gj) is compromised in state
Sk+x, and the state transition from Sk to Sk+1 modified group gj (added,
removed, or updated a key), then messages sent to gj in states S0, . . . ,Sk
remain confidential.

3



Post-Compromise Security (PCS) If device di is compromised in state Sk,
and in some subsequent state Sk+x, either di executes update(di, gj) or
some dj executes remove(dj , gj , di), then starting in state Sk+x+1, mes-
sages sent to gj are again confidential.

Both forward secrecy and post-compromise security are strengthened ver-
sions of the message secrecy goal. Ordinary message secrecy only holds for
groups that are never compromised. FS says that it holds for all messages sent
up to Sk, even if the group is compromised at Sk+x, as long as the group’s
keys have been updated between these states. Similarly, PCS says that message
secrecy holds after Sk+x even if the group was compromised at Sk, as long as
the compromised device’s keys were updated between these states.

3 Asynchronous Decentralized Protocols

The goal of an MLS protocol is to implement the global messaging functionality
and achieve its stated security goals in a way that is decentralized (that is,
devices can execute the protocol without relying on a trusted central authority)
and asynchronous (that is, each device can advance the global state and send
messages even if all other devices are offline.)

Local State Each MLS protocol needs to specify the local state at each device
as its relationship to the abstract global state. In particular, the local state at
device di, written S |di , must consist at least of the following elements:

• Gi: the groups that di belongs to, including the singleton group {di}

• members : Gi → 2D: members of the groups that di belongs to

• secret key : Gi → Ks: secret keys for groups that di belongs to

• public key : Gi → P: public keys for groups that di belongs to

In addition, the state at di may also contain public information about other
groups that it does not belong to. For example, each device may store the
public components for the full global state, but it is more likely that different
protocols will try to optimize the storage that each device needs to keep.

Asynchronous Group Operations Each group operation involves a specific
device (the sender) and a specific group (the target). Consequently, for each
operation, the protocol needs to define a send operation for the sending device
and a corresponding receive operation that is executed at each recipient.

For example, to update its key a device di calls sendupdate(di, gj) to gen-
erate an (encrypted) message c which it then sends to some set of devices
d0, . . . , dm. At this point, the global state has been changed by di and the
local state at di is consistent with the global state, but the local states at

4



other devices are out-of-date. As each recipient dl receives the update and calls
receiveupdate(dl, gj , c) to process the update, it changes its own local state
to become consistent with the new global state.

The full list of operations that an MLS protocol needs to implement are:

• sendcreate(di, g
′, {d0, . . . , dj}) : Sk |di

7→ (c0, . . . , cm,Sk+1 |di
)

receivecreate(dl, g
′, cl) : Sk |dl

7→ (di,Sk+1 |dl
)

• sendadd(di, gj , d
′) : Sk |di

7→ (c0, . . . , cm,Sk+1 |di
)

receiveadd(dl, gj , cl) : Sk |dl
7→ (di,Sk+1 |dl

)

• sendremove(di, gj , d
′) : Sk |di

7→ (c0, . . . , cm,Sk+1 |di
)

receiveremove(dl, gj , cl) : Sk |dl
7→ (di,Sk+1 |dl

)

• sendupdate(di, gj) : Sk |di
7→ (c0, . . . , cm,Sk+1 |di

)
receiveupdate(dl, gj , cl) : Sk |dl

7→ (di,Sk+1 |dl
)

Crucially, the protocol needs to implement these local send and receive oper-
ations using just the locally available device state. If each device stores informa-
tion about all members of the group, and if each group modification operation
involves a distinct message for each member, the storage, bandwidth, and com-
putational requirements for every operation becomes linear in the group size.

For large groups with thousands of members, linear growth does not scale.
Consequently, the current draft MLS protocol [BMO+18] uses a tree structure
for each group to construct a number of auxiliary sub-groups that help reduce
the complexity of each group operation. It relies on a cryptographic construc-
tion called Asynchronous Ratcheting Trees (ART) [CGCG+17] to implement
all operations using O(log(n)) storage, bandwidth, and complexity, both at the
sender and the receiver. In the next section, we present a protocol that uses
a similar tree structure but a different cryptographic construction to further
reduce the computational complexity at the recipient.

In addition to efficiency, another important consideration for a decentralized
protocol is the ability for nodes to generate and consume messages indepen-
dently, without requiring central coordination. In order to allow for uncoordi-
nated operation, a protocol needs to accommodate the risk that two or more
nodes will generate messages that evolve the group state in two different ways.
One option, adopted in the current draft MLS protocol, is for members simply
to reject all but the first update. This requires only that the participating nodes
agree on the sequence of the messages, but requires a large number of retries
before all nodes’ changes are incorporated in the group state. In the next sec-
tion, we present a protocol that can reduce the number of retries by allowing
nodes to merge multiple received updates in some cases.

Protocol Consistency Goals A decentralized, asynchronous MLS protocol
needs to implement the global functionality, which means that the local states
at each device should map to a global state that achieves the functionality and
security goals of MLS. In particular, the protocol needs to achieve the following:

5



Local State Consistency For each device di, there exists a sequence of global
states S0 −→ . . . −→ Sk . . . such that the local state at di is consistent
with one of these global states (Sk |ddi

).

Global State Convergence If all messages sent by all devices have been cor-
rectly received and processed at all recipient devices, and no messages are
in-flight, then the state at all devices is consistent with the same global
state Sk.

A Simple Protocol with Linear Scaling All four group modification op-
erations in MLS involve a similar pattern. Since each operation modifies (or
creates) a group, it needs to generate a fresh group key and deliver it to the
members of the group, and possibly also deliver a new public key for the sender
(to acheive post-compromise security). Hence, each of these operations can be
seen as a key encapsulation mechanism (KEM) applied to a group of public
encapsulation keys, rather than a single public key. Following Smart [Sma05],
we call this a multi-KEM or mKEM construction.

A näıve protocol implementating MLS would be as follows: each device keeps
the public keys of all other members of the group. For each group operation, it
encrypts a fresh key to all members of the group, using their public keys:

• create(di, g
′, {d0, . . . , dn}): the device di creates a fresh group secret

key k′ and sends a create message containing this key encrypted to
public key(d0), . . . , public key(dn). Each recipient dl decrypts the message
using its private key secret key(dl) and updates its state.

• add(di, gj , d
′): the device di creates a fresh group secret key k′ and sends

an add message containing this key encrypted to the current participants’
keys public key(d0), . . . , public key(dn) as well as the new participant’s key
public key(d′). Each recipient di uses its secret key secret key(di) to de-
crypt the new secret key and update its state.

• remove(di, gj , d
′): the device di creates a fresh group secret key k′ and

sends a remove message containing this key encrypted to all members of
gj except for d′. If there is no key already established for this subgroup,
di encrypts the key for the public key of each remaining member of the
group public key(d0), . . . , public key(dn).

• update(di, gj): the device di creates a fresh key-pair for itself
(secret keyk+1(di), public keyk+1(di)) and a fresh group secret key k′ and
sends an update message containing this key encrypted to all members of
gj except for itself. If there is no key already established for this subgroup,
di encrypts the key for the public key of each remaining member of the
group public key(d0), . . . , public key(dn).

In this protocol, every group operation results in a fresh group key, and
with some effort, we can prove that the protocol achieves message secrecy and

6



integrity, forward secrecy and post-compromise security. If we forbid concurrent
operations and assume that all operations are sent and received in some total
order, then the local state at each node remains consistent to the global state
obtained by executing each sent operation in this order.

However, this protocol requires O(n) storage, bandwidth, and computation.
Specifically, each create, add, update and remove operation requires O(n) stor-
age, computation and bandwidth at the sender, and O(1) computation and
bandwidth at the recipient. Linear storage and computation for sending new
group operations is not scalable for large groups.

The ART protocol [CGCG+17] uses a tree-based structure to reduce the cost
of each operation to O(log(n)) at both the sender and recipient. In the next
section, we also use a tree based structure to build a protocol that is halfway
between ART and the mKEM-based protocol above. It is as efficient as ART at
senders, more efficient at recipients, and supports a greater degree of concurrent
operations.

4 TreeKEM: an MLS protocol

We propose to organize the members of each user-visible group (a “messaging
group”) as a tree of subgroups so that protocol messages can update multiple
subgroups at once. The resulting protocol is dubbed TreeKEM, and it bor-
rows ideas from multi-KEM [Sma05], Asynchronous Ratchet Trees [CGCG+17],
Decentralized Dynamic Broadcast Encryption [PPS11], and Group Key Exca-
hange [ACMP10]. TreeKEM relies on a collision-resistant hash function (H), a
public-key encryption mechanism (pgen, penc, pdec), a pseudo-random function
used for key derivation function (kdf ), and an authenticated encryption scheme
(gen, enc, dec).

Trees of Sub-groups We assume that each messaging group in the global
state is the root of a tree where each node of the tree corresponding to some
sub-group. The leaves of the tree are devices (i.e., one-member groups). For
simplicity, we will assume a left-balanced binary tree, but the protocol is easily
generalizable to a tree of arbitrary arity and structure. Hence, each messaging
group of n devices forms a tree of height log(n), where each device (leaf node)
is a member of up to log(n) groups (its ancestors in the tree) and the root
corresponds to the messaging group. We extend the global state S with the
following elements that allow G to be treated as a forest, where each tree is
rooted at one messaging group:

• M ⊆ G: a set of messaging groups

• encryption key :M→ Kae: a mapping from messaging groups to authen-
ticated encryption keys

• parent(gi) 7→ gj : a mapping from a tree node to its parents (if it exists)

• sibling(gi) 7→ gj : a mapping from a tree node to its sibling (if it exists)

7



• path(di, gj) 7→ g0, . . . , gj : the sequence of groups from di to the root in
the tree with root gj , where g0 = {di}, gk+1 = parent(gk), and gj ∈M.

• copath(di, gj) 7→ g′0, . . . , g
′
j : the siblings of each group in path(di, gj)

As we may expect for trees, the above functions satisfy several proper-
ties. For example, for any gi, if sibling(gi) 6= ⊥, then parent(sibling(gi)) =
parent(gi) and sibling(gi) 6= gi. Furthermore, if di ∈ members(gj), then di ∈
members(parent(gj)), and if di ∈ members(gj), then di 6∈ members(sibling(gj)).

Local State We specify the local state at each device as follows:

• Mi: the messaging groups that di belongs to.

• encryption key : Mi → Kae: authenticated encryption keys for the mes-
saging groups of di

• Gi: a set of sub-groups that di belongs to, including the singleton group
{di}.

• secret key : Gi → Ks: secret keys for groups that di belongs to

• public key : sibling(Gi)→ P: public keys for the sibling groups of Gi

Hence, for each messaging group gj , di needs to keep the group encryption
key, secret keys for all groups on path(di, gj), and public keys for all groups on
copath(di, gj). So, the storage requirements for every group of size n that di
decides to join is O(log(n)). To participate in m groups of size n each, di would
have to keep O(mlog(n)) state.

It is worth noting that up to this point the group structures and local states
stored in ART and TreeKEM are the same. The only difference is that in
ART, the keys for each group (secret key(g), public key(g)) must correspond to
a Diffie-Hellman keypair, whereas in TreeKEM, we can choose any keypair that
support key encapsulation (KEM); that is, we should be able to encrypt a key
to public key(g) in a way that it can be decrypted only using secret key(g).

Computing Tree Keys In order to compute group keys, we need to assign
to each tree node a keypair that is known only to members of the group, that
is, to the devices that appear as leaves in the current subtree. At the leaves, we
generate fresh KEM key-pairs for each device (secret key(di), public key(di)). For
each internal node, the secret key is computed as a hash of the secret key of one of
the two children, intuitively the last child to have issued a group operation. The
messaging group’s authentication encryption key (encryption key(dj)) is derived
(as a chain of kdf invocations) from the sequence of keys at the root of the tree
(as in MLS [BMO+18]).

In ART, each internal node’s secret key is computed (via a Diffie-Hellman
shared secret computation) from both children’s secret keys. In TreeKEM, on
the other hand, internal node keys only depend on one of the two children.

8



Hence, the keys for internal nodes in TreeKEM are not contributive (unlike
ART) and this leads directly to some of TreeKEM’s advantages with regard to
concurrency. Note that the messaging group’s encryption key is still contribu-
tive in the sense that it incorporates keying material from all nodes that have
initiated some group operation.

As a running example, consider the sequence of transitions in Figures 2-7
(summarized in Figure 1):

• Figure 2 represents a freshly created group of five devices (A,B,C,D,E).
Each node is annotated with the group secret key assigned to that node
(for simplicity, our figures use the device name to also refer to its secret
key). The tree keys are computed as if the nodes have been added in
left-to-right order so that the last device (E) determines the key of its
ancestors.

• Figure 3 shows the tree after device B has issued an update, generating a
fresh key B’ and installing a sequence of hashed keys up the tree.

• Figure 4 shows the tree after a new device F has been added to the group
with a fresh key F and installing a sequence of hashed keys up the tree.

• Figure 5 shows the tree after the device C is removed from the group, and
all its (previous) groups are given a sequence of hashed keys starting with
a fresh key C’ that is unknown to C.

• Figure 6 shows the tree after A and D have issued simultaneous updates,
and other nodes have applied them in sequence. In this state, compromise
of A or D individually will not reveal the group key, but compromise of
both will.

• Figure 7 shows the tree after B has issued another update, following
the application of the concurrent updates from A and D. The full post-
compromise security of the group is restored.

In TreeKEM, if two operations execute concurrently, they are many ways
they can be merged. For example, we may assume that operations coming from
devices in a left subtree must be executed before devices on the right. Or else, we
can enforce more subtle policies like: updates must be processed before removes.
We may also rely on the delivery service to totally order all operations so that all
devices process them in the same order. The key property of TreeKEM is that
most operations are “mergeable” in the sense that any device who receives two
concurrent operations will be able to process and execute them both without
having to reject one of them or asking for more information.

Figure 6 shows how two concurrent updates may be merged by using the
order of devices as a tie-breaker. Since both updates were issued against the
old global state, however, the new tree is still not fully up to date, in the sense
that an attacker who knows the old keys at both A and D is able to compute
the new group key. However, as soon as any device close to A or D issues

9



K0CREATE(A, …, E)

UPDATE(B, B’)

ADD(F)

REMOVE(C)

UPDATE(A, A’)

UPDATE(D, D’)

UPDATE(B’, B’’)

Tree0

0

K1Tree1

Tree2

Tree3

Tree4

Tree5

K2

K3

K4

K5

Tree6 K6

Figure 1: The sequence of changes depicted in Figures 2-7. Columns represent
protocol messages, states of the tree, and group keys, respectively. Solid arrows
indicate causality. The dashed arrow between the two updates indicates that
the group has agreed on an ordering between them.

10



A B

H(B)

C D E

H2(D)

H(D)

H(E)

K0 = KDF(H(E),0)

Figure 2: A newly created messaging group with 5 devices and initial group
encryption key K0.

A B’

H(B’)

C D E

H2(B’)

H(D)

H3(B’)

K1 = KDF(H3(B’), K0)

Figure 3: Device B updates the keys for all the groups it belongs to, resulting
in a new group key K1.

11



A B’

H(B’)

C D E

H2(B’)

H(D)

H2(F)

H(F)

F

K2 = KDF(H2(F), K1)

Figure 4: Device F is added to the group, resulting in a new group key K2.

A B’

H(B’)

D E

H2(C’)

H(C’)

H3(C’)

H(F)

F

K3 = KDF(H3(C’), K2)

Figure 5: Device C is removed from the group, resulting in a new group key K3.

12



A’ B’

H(A’)

D E

H2(A’)
H2(D’)

H(D’)

H3(A’)
H3(D’)

H(F)

F

K4 = KDF(H3(A’), K3)

K5 = KDF(H3(D’), K4)

Figure 6: Devices A and D issue updates at the same time, and the tree merges
these updates, choosing to execute D’s update after A’s. Note that some of
A’s updates are overwritten by D’s, but the group key K5 incorporates both
updates. At this stage, we obtain PCS against the compromise of one of the
two devices but not both: an adversary who compromises the old keys at both
device A and D will still be able to compute K5, since H2(D′) and H2(A′) were
sent encrypted to the old public keys of A and D.

an update against the new, merged state, the old keys will be locked out, as
shown in Figure 7. In other words, TreeKEM allows concurrent updates to be
immediately executed, but their post-compromise security benefits do not apply
until another update is issued against the merged state.

Because processing an update involves overwriting keys, in order for concur-
rent updates to work properly, implementations need to retain a set of historical
keys so that they can process updates which were sent based on the same initial
state Sk. This is compatible with a number of state retention algorithms, as
long as implementations agree on which updates are to be processed and which
are to be rejected (and hence when keys can be discarded).

Sending Messages to Subsets of a Group Because the groups are ar-
ranged in a tree, it is possible to efficiently encrypt messages to subsets of the
group members. To send to any group, gj we merely encrypt to public key(g).
In order to send to gj \di we encrypt to the the public keys corresponding to the

13



A’ B’’

H(B’’)

D E

H2(B’’)

H(D’)

H3(B’’)

H(F)

F

K6 = KDF(H3(B’’), K5)

Figure 7: After processing the concurrent updates from devices A and D, device
B sends a new update. This update propagates up the tree, thereby “healing” all
tree nodes into a consistent merged state. Once this new update is processed,
we obtain PCS against compromise of all devices; that is, an adversary who
compromises the old states of A, B, and D can no longer compute the new
group key.

14



copath(gj , di). For example, if we wished to encrypt a message to nodes a, b, c,
d, and f in 4, we would need to encrypt to nodes abcd and f. This technique can
be extended to subsets with more missing members, though of course efficiency
rapidly falls off.

TreeKEM Operations The TreeKEM protocol defines the following group
operations:

• When a device calls sendcreate(di, g
′, {d0, . . . , dn}), the function gener-

ates fresh leaf keys K0, . . . ,Kn for d0, . . . , dn. It then computes the rest
of the tree keys by choosing a hash of one of the child keys (say the right
child). Finally, the device computes a ciphertext for each device that con-
sists of the secret keys for its groups (encrypted under its private key) and
public keys for its co-path to the root.
For example, to create the group in Figure 2, the creator would send:

– to a: penca(Ka, H(Kb), H(H(Kd)), H(H(H(Ke))))
as well as public key(co-path) = public key(Kb), public key(H(Kd)), public key(H(H(Ke)))

– to b: pencb(Kb, H(H(Kd)), H(H(H(Ke))))
+ public key(Ka), public key(H(Kd)), public key(H(H(Ke)))

– to c: pencc(Kc, H(Kd), H(H(H(Ke))))
+ public key(Kd), public key(H(Kb)), public key(H(H(Ke)))

– to d: pencd(Kd, H(H(H(Ke))))
+ public key(Kc), public key(H(Kb)), public key(H(H(Ke)))

– to e: pence(Ke) + public key(H(H(Kd)))

Hence, for a group of size n the creator needs to send n encryptions,
each encryption containing between 1 and log(n) keys, coming to a total
ciphertext size of 2n. It also needs to send 2n public keys (corresponding
to the whole tree.)

• The delivery service needs to deliver to each device one of these encryp-
tions (ciphertext size ≤ log(n)) and log(n) public keys for the co-path.
On receiving this creation message, each member of the new group calls
receivecreate(d, c) which performs one decryption and computes log(n)
hashes to obtain all the secret and public keys needed to compute the new
state.

• When a device calls sendupdate(di, gj), the function generates a fresh key
K ′ for di and computes a sequence of hashes H(K ′), H(H(K ′)), . . . ,HL(K ′)
for all groups on the path from di to the root. It then computes a sequence
of ciphertexts for each group gj on the co-path from di to the root by en-
crypting for gj the new key for its parent.
For example, to update the group as in Figure 3, device b would send:

– to device a: pencpublic key(Ka)(H(K ′
b))

+ public key(K ′
b)

15



– to the group cd: pencpublic key(H(Kd))
(H(H(K ′

b)))
+ public key(H(K ′

b))

– to the device e: pencpublic key(H(H(Ke)))(H(H(H(K ′
b))))

+ public key(H(H(K ′
b)))

Hence, for a group of size n, each updater needs to compute log(n) en-
cryptions, each containing one (hashed) key, and compute log(n) public
keys from secret keys. The message it sends has size 2log(n).

• The delivery service delivers to each device a single ciphertext and a single
public key. The recipient then calls receiveupdate(dl, c) to compute the
new key for its lowest shared ancestor with the updating node di, and then
hashes the key to obtain the keys for all nodes from this ancestor to the
root. The recipient hence has to compute a single decryption, then log(n)
hashes.

• When a device calls sendadd(di, gj , dl), the function behaves the same
way as if dl had asked for an update. A fresh key K ′

l is generated for dl
and hashed up the tree to the root. Each of these keys is then encrypted
to the corresponding group on the co-path. If di = dl then only the new
device knows these keys. As in update, the complexity for sending an add
is log(n) encryptions whereas the complexity for receiving an add is one
decryption and log(n) hashes.

• When a device calls sendremove(di, gj , dl), the function behaves as if dl
has asked for an update, except that dl is not given its new key K ′. Again,
the complexity for sending a remove is log(n) encryptions whereas the
complexity for receiving a remove is one decryption and log(n) hashes.

In summary, the complexity of creating a group in TreeKEM is roughly
O(n) where each recipient needs to do about O(log(n)) work. The complexity
of issuing other group operations is roughly O(log(n)) encryptions and public-
key derivations, where each recipient needs to only perform one encryption and
O(log(n)) hashes. Hence, on the recipient side, TreeKEM appears to be more
efficient than ART, which requires O(log(n)) variable-base DH operations +
public key derivations at each recipient.

For the messaging operations on the full group, we use a key derived from
the full sequence of root keys, by feeding each root key into kdf along with the
prior root key, as in MLS [BMO+18]. The final result of this chain of derivations
is again fed into kdf to obtain an authenticated encryption key which can be
used to encrypt group messages within the group.

A consequence of this design is that a device needs to know both the old
and new keys in order to compute the new key for communicating within the
group. When a new device is added, it will not know the old key and hence will
not be able to derive the new group key. So, we assume that some member of
the group delivers to the new device the new group messaging key, obtained by
hashing the prior group key with the new root key.

16



Send Receive ART
Operation Hash Pub Hash Pub Pub
Create n 2n log(n) 1 2n
Update log(n) 2log(n) log(n) 1 2log(n)
Add log(n) 2log(n) log(n) 1 2log(n)
Remove log(n) 2log(n) log(n) 1 2log(n)

Table 1: Complexity of TreeKEM operations, in units of the number of hashes
and public-key operations required (including both KEM and public-key deriva-
tion). For ART, the send and receive operations have the same complexity.

5 Handling Concurrent Group Operations

A key feature of TreeKEM is its support for merging concurrent group opera-
tions. Notably, any node that recieves two concurrent updates is able to compute
a consistent set of secret and public keys for its view of the global state.

A simple way of merging concurrent operations is to pick an arbitrary order
of devices; for example in Figure 6 we choose the update from a right subtree
over an update coming from a left subtree. Alternatively, we may rely on a
centralized delivery service to serialize all concurrent updates into a consistent
total order. Any such uniform, global ordering will result in a consistent global
state that converges on all devices. However, not all operations can be merged
in this way, and not all merges will have the desired effect, hence the protocol
has to be careful on how it merges such operations. Some tricky examples:

• If two devices are added at the same location in the tree at the same time,
only one of these can succeed, and the other add must be rejected.

• If two devices are added at different locations in the tree at the same
time, and we order one of these (di) before the other (dj). Then the final
key will be determined by the add operation for dj . However, since the
device that added dj was not aware of di when issuing its add operation,
it would not have encrypted the right key to di and hence di remains in
an incomplete state until it receives the additional data it needs.

• If two devices remove each other, we can remove both, or we may reject
one or both of these operations as being contradictory.

• If a device is removed while another device is updated, and if the remove
is chosen to be executed before the update, then the fresh group key
created by the update will be sent to the removed node, which would then
know the new group key even though it has been removed.

• If two devices are updated at the same time, then the new updated group
key will be delivered to the old keys at these devices, and hence an attacker
who knows the old keys will be able to continue reading group messages,
even though both devices have issued updates, intuitively violating PCS.

17



Some of these cases can be avoided by employing a strict merge policy. For
example, we may decide that add operations cannot be concurrent and hence
are not asynchronous in the sense that they may fail and the adding device
needs to be aware of this, and be willing to send a fresh add operation on
failure. Updates and removes may be performed concurrently but updates will
always be ordered before removes. Hence, in each time slot, we allow a series of
updates, followed by removes, followed by a single add.

Even with these rules, we need to be aware that the guarantees of TreeKEM
will always be stronger for sequential operations than for concurrent ones. For
example, if two nodes are removed one after the other, they will be removed from
the group and the adversary won’t have access to the new group key even if both
devices were compromised. However, if these devices were removed concurrently,
an adversary who has compromised both devices still has temporary access to
the full group key, although it will gradually be deauthorized as these or other
nodes start sending updates.

Consequently, the right way of looking at the state of TreeKEM is to look
at the versions of each key in the tree. If there is any node which is out-of-date
with respect to one of its children, then the global state of the messaging system
is “un-merged”. As soon as any new (non-concurrent) operation flows up from
any of this node’s children, the tree becomes up-to-date and can be considered
to be “merged”, and hence consistent with a merged global state. In other
words, TreeKEM provides immediate consistency for sequential operations and
eventual consistency for concurrent operations.

An Encrypting Serializer The guarantees of TreeKEM for concurrent oper-
ations can be strengthened if we are willing to invest more trust into the delivery
service.

First, the delivery service can define a total order on group operations, based
for example on the order in which it receives these operations, making the merge
policies described above unnecessary.

Second, the delivery service can guarantee immediate consistency for con-
current updates by using encryption to enforce the serial order of operations. In
particular, if operation o is serialized before o′ then the ciphertexts of o′ need to
be encrypted with keys that incorporate the new keys generated by o. If o′ and
o were concurrent, then this property does not hold, but the delivery service
can enforce it by adding another layer of encryption with the new keys.

Suppose the delivery service receives and executes each group operation in
a total order and keeps track of the current public keys of each group. When
the delivery service receives a concurrent operation, this operation will contain
ciphertexts encrypted to the old public keys for certain groups. In this case,
the delivery service encrypts these ciphertexts again with the new public keys
for the groups, so that only devices who know both the old and new secret keys
can read the contents.

Note that such an encrypting serializer does not get to read the plaintexts but
can enforce a sequential interpretation of concurrent updates using public key

18



encryption. Still, the above proposed mechanism does require a higher degree of
trust in the delivery service; if the service colludes with a compromised device,
the service can delay the removal or updates for the device, weakening the PCS
guarantee. However, one may argue that any delivery service can already do
this by selectively delaying or ignoring some operations.

Preventing Double Join In TreeKEM, when a device di adds or removes
another device dj , di controls the new keys for the path from dj to the root, even
though di is itself not a member of these subtrees. In a sense, di now controls
two leaves in the tree, a phenomenon called double join. A similar scenario
occurs in ART for group-add and remove operations.

Double join is undesirable because it gives di control over sub-groups that it
was not invited to join. In particular, if we then wanted to delete di, we should
also delete (or update the keys for) the path from dj to the root, since this path
has been “tainted” by di.

MLS protocols can employ various mechanisms to detect and protect against
malicious nodes that have double-joined a group. For example, the protocol may
keep track of all the leaves controlled by each device, so that when the device
is deleted, all these other leaves can be deleted as well.

A stronger alternative would be to prevent double-join in the first place.
User-initiated add and remove operations do not result in double-join. For
group-initiated remove, the protocol may rely on algebraic properties of the
public-key encryption to avoid double-join. For example, instead of overwriting
the keys on the path from dj to the root with a fresh key K ′, we may instead
combine K ′ to the previous key on each node from dj to the root. Hence, the
removing node di would not know the new keys on the path, preventing double
join. The key challenge is that di must still be able to compute the new public
keys for this path. If we used Diffie-Hellman based encryption (e.g. El-Gamal
or DHIES), then we can use an algebraic combination to achieve this goal. We
add K ′ to the previous DH private key at each node, and compute the new DH
public key by multiplying gK

′
with the previous public key.

Finally, preventing double-join efficiently in group-initiated add remains an
open problem. The only way to do this that we know of is to generalize the tree
structure to allow each node to hold a lists of keys, and encrypt every message
to a subgroup under all the keys in the subgroup node. This prevent double-join
at the cost of a significant number of extra encryptions.

Provably Consistent Group Operations A final desirable goal for an MLS
protocol is that group operations should be provably consistent; that is, if a
device were to encrypt fresh keys for two groups in a tree, anybody can check
that these keys are mutually consistent, or at least that they map to the same
full group key.

In TreeKEM, we propose to add strong consistency checking for all group
operations by employing a classical Schnorr-like non-interactive zero-knowledge
proof of consistency. We are working out the details of this construction, but

19



informally, every group operation includes an El-Gamal encryption (with the
recipient’s public key) of the full messaging group key and a proof that this
set of group keys encrypted to all recipients is consistent. Any device or server
can verify this proof (the verifier does not have to be a member of the group)
and consequently, the burden of verifying consistency can be off-loaded onto the
delivery servers without impacting the recipients’ computational load.

References

[ACMP10] Michel Abdalla, Céline Chevalier, Mark Manulis, and David
Pointcheval. Flexible Group Key Exchange with On-Demand Com-
putation of Subgroup Keys. In Third African International Con-
ference on Cryptology (AfricaCrypt ’10), volume 6055 of LNCS,
pages 351–368, Stellenbosch, South Africa, 2010. Springer.

[BMO+18] R. Barnes, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert.
The messaging layer security protocol. IETF Inernet Draft, Febru-
ary 2018.

[CGCG+17] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican,
and Kevin Milner. On ends-to-ends encryption: Asynchronous
group messaging with strong security guarantees. Cryptology
ePrint Archive, Report 2017/666, 2017. https://eprint.iacr.

org/2017/666.

[OBR+18] E. Omara, B. Beurdouche, E. Rescorla, S. Inguva, A. Kwon, and
A.Duric. Messaging layer security architecture. IETF Inernet
Draft, February 2018.

[PPS11] Duong Hieu Phan, David Pointcheval, and Mario Strefler. Decen-
tralized dynamic broadcast encryption. Cryptology ePrint Archive,
Report 2011/463, 2011. https://eprint.iacr.org/2011/463.

[Sma05] N. P. Smart. Efficient Key Encapsulation to Multiple Parties, pages
208–219. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

20


