
Keep the Dirt: Tainted TreeKEM, Adaptively and
Actively Secure Continuous Group Key Agreement

Karen Klein∗]§, Guillermo Pascual-Perez∗][, Michael Walter∗]§, Chethan Kamath, Margarita Capretto‡,
Miguel Cueto∗, Ilia Markov∗, Michelle Yeo∗[, Joël Alwen‡, Krzysztof Pietrzak∗§

{kklein, gpascual, mwalter}@ist.ac.at

∗IST Austria, †Universidad Nacional del Rosario, ‡Wickr Inc.

Abstract—While messaging systems with strong security guar-
antees are widely used in practice, designing a protocol that scales
efficiently to large groups and enjoys similar security guarantees
remains largely open. The two existing proposals to date are ART
(Cohn-Gordon et al., CCS18) and TreeKEM (IETF, The Messag-
ing Layer Security Protocol, draft). TreeKEM is the currently
considered candidate by the IETF MLS working group, but
dynamic group operations (i.e. adding and removing users) can
cause efficiency issues. In this paper we formalize and analyze a
variant of TreeKEM which we term Tainted TreeKEM (TTKEM
for short). The basic idea underlying TTKEM was suggested by
Millican (MLS mailing list, February 2018). This version is more
efficient than TreeKEM for some natural distributions of group
operations, we quantify this through simulations.

Our second contribution is two security proofs for TTKEM
which establish post compromise and forward secrecy even
against adaptive attackers. The security loss (to the underlying
PKE) in the Random Oracle Model is a polynomial factor, and
a quasipolynomial one in the Standard Model. Our proofs can
be adapted to TreeKEM as well. Before our work no security
proof for any TreeKEM-like protocol establishing tight security
against an adversary who can adaptively choose the sequence of
operations was known. We also are the first to prove (or even
formalize) active security where the server can arbitrarily deviate
from the protocol specification. Proving fully active security –
where also the users can arbitrarily deviate – remains open.

I. INTRODUCTION

Messaging systems allow for asynchronous communication,
where parties need not be online at the same time. Messages
are buffered by an untrusted delivery server, and then relayed
to the receiving party when it comes online. Secure messaging
protocols (like Open Whisper Systems’ Signal Protocol) pro-
vide end-to-end privacy and authenticity but, by having parties
perform regular key updates, also stronger security guaran-
tees like forward secrecy (FS) and post-compromise security
(PCS). Here, FS means that even if a party gets compromised,
previously delivered messages (usually all messages prior to
the last key update) remain private. In turn, PCS guarantees
that even if a party was compromised and its state leaks,
normal protocol execution after the compromise ensures that
eventually (usually after the next key update) future messages
will again be private and authenticated.

]The first three authors contributed equally to this work.
§Funded by the European Research Council (ERC) under the European

Union’s Horizon2020 research and innovation programme (682815-TOCNeT).
[Funded by the European Union’s Horizon 2020 research and innovation

programme under the Marie Skłodowska-Curie Grant Agreement No.665385.

Most existing protocols were originally designed for the
two party case and do not scale beyond that. Thus, group
messaging protocols are usually built on top of a complete
network of two party channels. Unfortunately, this means that
message sizes (at least for the crucial key update operations)
grow linearly in the group size. In view of this, constructing
messaging schemes that provide strong security – in particular
FS and PCS – while efficiently1 scaling to larger groups is
an important but challenging open problem. Designing such
a protocol is the ongoing focus of the IETF working group
Message Layer Security (MLS) [1].

Instead of constructing a messaging scheme directly, a
modular approach seems more natural. This was done for the
two party case by Alwen et al. [2]. We consider in this paper
the concept of Continuous Group Key Agreement (CGKA), a
generalisation for groups of their Continuous Key Agreement
(CKA). Such a primitive can then be used to build a group
messaging protocol as in [2].

A. Continuous Group Key Agreement

Informally, in a CGKA protocol any party ID1 can initialise
a group G = (ID1, . . . , IDn) by sending a message to all
group members, from which each group member can compute
a shared group key I . ID1 must know a public key pki of each
invitee IDi, which in practice could be realized by having a
key-server where parties can deposit their keys. As this key-
management problem is largely orthogonal to the construction
of a CGKA, we will assume that such an infrastructure exists.

Apart from initialising a group, CGKA allows any group
member IDi to update its key. Informally, after an Update2

operation the state of IDi is secure even if its previous
state completely leaked to an adversary. Moreover any group
member can add a new party, or remove an existing one.

These operations (Update, Add, Remove) require sending a
message to all members of the group. As we do not assume
that the parties are online at the same time, IDi cannot simply
send a message to IDj . Instead, all protocol messages are
exchanged via an untrusted delivery server. Although the
server can always prevent any communication taking place,
we require that the shared group key in the CGKA protocol

1The meaning of efficient here will be determined by what can be
implemented and receive adoption by the general public, but we think of
it as having message sizes (poly)logarithmic in the size of the group.

2We use capital letters to refer to the operations (as opposed to verbs).

268

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Karen Klein. Under license to IEEE.
DOI 10.1109/SP40001.2021.00035

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
35

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

– and thus the messages encrypted in the messaging system
built upon it – remains private.

Another issue we must take into account is the fact that (at
least for the protocols discussed below) operations must be
performed in the same order by all parties in order to maintain
a consistent state. Even if the delivery server is honest, it can
happen that two parties try to execute an operation at the
same time. In this case, an ordering must be enforced, and
it is natural to let the delivery server do it. Whenever a party
wants to initiate an Update/Remove/Add operation, it sends
the message to the delivery server and waits for an answer. If
it gets a confirmation, it updates its state and deletes the old
one. If it gets a reject, it deletes the new state and keeps the
old one. Note that when a party gets corrupted while waiting
for the confirmation, both, the old and new state are leaked.

The formalization of CGKA is fairly recent, having first
been introduced in [3]. In particular, the MLS working group
predates it, which only complicates any account of its develop-
ment. We try to give a brief overview below. Up to the writing
of this paper, the MLS protocol has seen 9 versions, through
which we can find two different CGKA protocols: ART and
TreeKEM, both of which were incorporated as candidates in
the initial MLS protocol draft. ART was later removed in the
second version of the protocol, with TreeKEM (which has
seen several modifications throughout the different versions)
being the current candidate. Accordingly, we will refer to
the CGKA construction underlying version X of the MLS
draft as TreeKEMvX . We will also loosely use the term
TreeKEM when referring to aspects that are not unique to
specific versions or when there is no ambiguity.

1) Asynchronous Ratcheting Tree (ART): The first proposal
of (a simplified variant of) a CGKA is the Asynchronous
Ratcheting Tree (ART) by Cohn-Gordon et al. [4]. This
protocol (as well as TreeKEM and the protocol formalized in
this paper) identifies the group with a binary tree where edges
are directed and point from the leaves to the root.3 Each party
IDi in the group is assigned their own leaf, which is labelled
with an ElGamal secret key xi (known only to IDi) and a
corresponding public value gxi . The values of internal nodes
are defined recursively: an internal node whose two parents
have secret values a and b has the secret value gab and public
value gι(g

ab), where ι is a map to the integers. The secret value
of the root is the group key. As illustrated in Figure 1, a party
can update its secret key x to a new key x′ by computing a
new path from x′ to the (new) root, and then send the public
values on this new path to everyone in the group so they can
switch to the new tree. Note that the number of values that
must be shared equals the depth of the tree, and thus (as the
tree is balanced) is only logarithmic in the size of the group.

The authors prove the ART protocol secure even against
adaptive adversaries. However, in this case, their reduction
loses a factor that is super-exponential in the group size. To
get meaningful security guarantees based on this reduction
requires a security parameter for the ElGamal scheme that is

3The non standard direction of the edges here captures that knowledge of
(the secret key of) the source node implies knowledge of the (secret key of
the) sink node. Note that nodes therefore have one child and two parents.

super-linear in the group size, resulting in large messages and
defeating the whole purpose of using a tree structure.

2) TreeKEM: The TreeKEM proposal [5], [6] is similar to
ART, as a group is still mapped to a balanced binary tree
where each node is assigned a public and secret value. In
TreeKEM those values are the public/secret key pair for an
arbitrary public-key encryption scheme. As in ART, each leaf
is assigned to a party, and only this party should know the
secret key of its leaf, while the secret key of the root is the
group key. Unlike in ART, TreeKEM does not require any
relation between the secret key of a node and the secret key
of its parent nodes. Instead, an edge u→ v in the tree (recall
that edges are directed and pointing from the leaves to the root)
denotes that the secret key of v is encrypted under the public
key of u. This ciphertext can now be distributed to the subset
of the group who knows the secret key of u to convey the
secret key of v to them. We will refer to this as “encrypting v
to u”. Below we will outline a slightly simplified construction,
close to TreeKEMv7, which will later ease the understanding
of the protocol here proposed.

To initialise a group, the initiating party creates a tree by
assigning the leaves to the keys of the invited parties. She then
samples fresh secret/public-key pairs for the internal nodes of
the tree and computes the ciphertexts corresponding to all the
edges in the tree. (Note that leaves have no ingoing edges and
thus the group creator only needs to know their public keys.)
Finally she sends all ciphertexts to the delivery server. If a
party comes online, it receives the ciphertexts corresponding
to the path from its leaf to the root from the server, and can
then decrypt (as it has the secret key of the leaf) the nodes on
this path all the way up to the group key in the root.

As illustrated in Figure 1, this construction naturally allows
for adding and removing parties. If IDi wants to remove IDj ,
she simply samples a completely fresh path from a (fresh) leaf
to a (fresh) root replacing the path from IDj’s leaf to the root.
She then computes and shares all the ciphertexts required for
the parties to switch to this new path except the ciphertext
that encrypts to IDj’s leaf. IDi can add IDj similarly, she just
samples a fresh path starting at a currently not occupied leaf,
using IDj’s key as the new leaf node, and communicates the
new keys to IDj . This process can be optimized if the keys
are derived hierarchically, from a hash chain of seeds, so that
a single seed needs to be encrypted to each party.

Unfortunately, adding and removing parties like this creates
a new problem. After IDi added or removed IDj , it knows all
the secret keys on the new path (except the leaf). To see why
this is a problem, assume IDi is corrupted while adding (or
removing) IDj (and no other corruptions ever take place), and
later – once the adversary loses access to IDi’s state – IDi

executes an Update. Assume we use a naı̈ve protocol where
this Update replaces all the keys on the path from IDi’s leaf
to the root (as in ART) but nothing else. As IDi’s corruption
also leaked keys not on this path, thus not replaced with the
Update, the adversary will potentially still be able to compute
the new group key, so the Update failed to achieve PCS.

To address this problem, TreeKEM introduced the concept
of blanking. In a nutshell, TreeKEM wants to maintain the
invariant that parties know only the secrets for nodes on the

269

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

path from their leaf to the root. However, if a party adds
(or removes) another party as outlined above, this invariant
no longer holds. To fix this, TreeKEM declares any nodes
violating the invariant as not having any secret (nor public)
value assigned to them. Such nodes are said to be “blanked”,
and the protocol basically specifies to act as if the child of a
blank node is connected directly to the blanked node’s parents.
In particular, when TreeKEM calls for encrypting something to
a blank node, users will instead encrypt to this node’s parents.
In case one or both parents are blanked, one recurses and
encrypts to their parents and so forth.

This saves the invariant, but hurts efficiency, as we now no
longer consider a binary tree and, depending on the sequence
of Adds and Removes, can end up with a “blanked” tree that
has effective indegree linear in the number of parties. The
reason one can still hope for TreeKEM’s efficiency to not
degrade too much and stay close to logarithmic in practice
comes from the fact that blanked nodes can heal: whenever
a party performs an Update operation, all the blank nodes on
the path from its leaf to the root become normal again.

The protocol studied in this paper builds closely on the one
just outlined. For completeness, we mention that the design of
TreeKEMv9 differs in essentially two aspects. First, operations
are not executed standalone, but bundled into groups: users can
at any point propose an operation, not having any impact on
the group state; then, a user IDj can collect those proposals
and execute them at once in a Commit, which includes an
update of IDj’s path, and moves the group forward into a new
epoch. This allows e.g. for IDi to propose an Update by just
sending their new leaf public key and waiting for someone else
to commit that proposal (which will in turn blank IDi’s path).
Second, Adds no longer involve blanking: a new user’s leaf
node will be directly connected to the root, and progressively
pushed down the tree as users within the appropriate subtree
commit. In particular, the initialization of the tree will now
consist of a Commit including Add proposals for each of
the group members. Since none of these aspects help in the
understanding of the proposed protocol, we omit the details
and refer the reader to the MLS draft [6].

B. Our Contribution

In this work we formalize an alternative CGKA design,
stemming from TreeKEM, first proposed by Millican on the
MLS mailing list on February 20184, which we call Tainted
TreeKEM, or simply TTKEM. Further, we show it to be more
efficient than TreeKEM on certain realistic scenarios and prove
it to satisfy a comprehensive security statement which captures
the intuition that an Update fixes a compromised state. Our
proof can be easily adapted to TreeKEM, for which we can
get exactly the same security statement.

1) Tainted TreeKEM (TTKEM): As just outlined, the reason
TreeKEM can be inefficient comes from the fact that once a
node is blanked, we cannot simply encrypt to it, but instead
must encrypt to both its parents, if those are blanked, to
their parents, and so forth. The rationale for blanking is to

4[MLS] Removing members from groups Jon Millican {jmillican@fb.com}
12 February 2018 https://mailarchive.ietf.org/arch/msg/mls/4-gvXpc-
LGbWoUS7DKGYG65lkxs

Asynchronous Ratcheting Tree (ART)

a b c d

e = gab f = gcd

gef

(a)

a b c d

e = gab f = gcd

gef

d′

f ′ = gcd
′

gef
′

(b)

TreeKEM

A H

(c)

A HA

(d)

A H

(e)

A H

(f)
Fig. 1: Top: Illustration of an Update in the ART protocol. The state of the
tree changes from (a) to (b) when Dave (node d) updates his internal state to
d′. Bottom: Update and Remove in TreeKEM and TreeKEM with blanking.
The state of a completely filled tree is shown in (c). The state changes from
(c) to (d) when Alice (node A) performs an Update operation. This changes to
(e) when Alice removes Harry (node H) in naı̈ve TreeKEM (with the nodes
that Alice should not know in red) or to (f) in the actual TreeKEM protocol
which uses blanking.

enforce an invariant which states that the secret key of any
(non-blanked) node is only known to parties whose leaves are
ancestors of this node. This seems overly paranoid, assume
Alice removed Henry as illustrated in Figure 1, then the red
nodes must be blanked as Alice knows their value, but it is
instructive to analyze when this knowledge becomes an issue
if no blanking takes place: If Alice is not corrupted when
sending the Remove operation to the delivery server there is
no issue as she will delete secret keys she should not know
right after sending the message. If Alice is corrupted then the
adversary learns those secret keys. But even though now the
invariant doesn’t hold, it is not a security issue as an adversary
who corrupted Alice will know the group key anyway. Only
once Alice updates (by replacing the values on the path from
her leaf to the root) there is a problem, as without blanking not
all secret keys known by the adversary are replaced, and thus
he will be able to decrypt the new group key; something an
Update should have prevented (more generally, we want the
group key to be safe once all the parties whose state leaked
have updated).

a) Keeping dirty nodes around, tainting versus blanking:
In TTKEM we use an alternative approach, where we do not
blank nodes, but instead keep track of which secret keys of
nodes have been created by parties who are not supposed to
know them. Specifically, we refer to nodes whose secret keys

270

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

were created by a party IDi which is not an ancestor of the
node as tainted (by IDi). The group keeps track of which nodes
are tainted and by whom. A node tainted by IDi will be treated
like a regular node, except for the cases where IDi performs
an Update or is removed, in which it must get updated.

Let us remark that tainted nodes can heal similarly to
blanked nodes: once a party performs an Update, all nodes
on the path from its leaf to the root are no longer tainted.

b) Efficiency of TTKEM vs TreeKEM: Efficiency-wise
TreeKEM and TTKEM are incomparable. Depending on the
sequence of operations performed either TreeKEM or TTKEM
can be more efficient (or they can be identical). Thus, which
one will be more efficient in practice will depend on the
distribution of operation patterns we observe. In Section II-D
we show that for some natural cases TTKEM will significantly
outperform TreeKEM. This improvement is most patent in the
case where a small subset of parties perform most of the Add
and Remove operations. In practice, this could correspond
to a setting where we have a small group of administrators
who are the only parties allowed to add/remove parties. The
efficiency gap grows further if the administrators have a lower
risk of compromise than other group members and thus can
be required to update less frequently. In this setting, TTKEM
approaches the efficiency of naı̈ve TreeKEM.

When we compare the efficiency of the CGKA protocols we
focus on the number of ciphertexts a party must exchange with
the delivery server for an (Update, Add or Remove) operation.
The reason for this is that the alternative metric of measuring
the number of ciphertexts a party needs to download to process
an operation is not as relevant, since, all protocols considered,
this number will be logarithmic in the worst case.5

2) Security of (Tainted) TreeKEM: A main contribution of
this work is a security proof for TTKEM for a comprehensible
security statement that intuitively captures how Updates ensure
FS and PCS, in a strong security model. In particular, this
constitutes the first adaptive security proof for any TreeKEM-
related protocol. Moreover, both the security statement and the
proof can be easily adapted to TreeKEM. We elaborate in the
following section.

C. The Adversarial Model

We anticipate an adversary who works in rounds, in each
round it may adaptively choose an action, including start/stop
corrupting a party, instruct a party to initalize an operation
or relay a message. The adversary can choose to corrupt
any party, after which its state becomes fully visible to the
adversary. In particular, corrupting a party gives the adversary
access to the random coins used by said party when executing
any group operation, deeming the party’s actions deterministic
in the eyes of the adversary throughout the corruption. We
would like to stress that security in this strong model implies
security in weaker and potentially more realistic models, e.g.
consider the setting where malware in a device leaks some
of the randomness bits but cannot modify them. He can
also choose to stop the corruption of a currently corrupted

5There is, however, still room for improvement in the case where a group
member comes online and must process a large number of operations, as these
could potentially be somehow batched by the server.

party. The adversary can instruct a party to initalize an
Init/Update/Remove/Add operation. This party then immedi-
ately outputs the corresponding message to be sent to the
delivery server. The goal of the adversary is to break the
security of a group key (i.e., a secret key that is contained in
the root in the view of at least one party) that – given the
sequence of actions performed – it should not trivially know.

We now discuss different possible restrictions on the adver-
sary corresponding to qualitatively different levels of security.

a) Adaptiveness: The literature distinguishes between
selective and adaptive adversaries. In the selective case, an
adversary is required to make all or some of its choices
(here this means the sequence of operations and which key
it is going to break) at the beginning of the security ex-
periment, without seeing any public keys or the results of
previous actions. While it is often more convenient to prove
security in this setting, it is clearly unrealistic, since in the
real world adversaries may adjust their behaviour based on
what they observe during the attack. So obviously, security
against adaptive adversaries is desirable. There is a generic
reduction from selective to adaptive adversaries that simply
guesses what the adversary may choose (this is the approach
effectively taken in [7]). However, this involves a loss in the
advantage that is exponential (or even superexponential) in
the size of the group. This means that in order to provably
achieve meaningful security, one needs to set the underlying
security parameter linear in the group size, which results in
the Update messages having size linear in the group size
(since they usually consist of encryptions of secret keys). But
the trivial construction based on pairwise channels also has
message size that is linear in the number of group members,
so such a security proof defeats the whole purpose of the
protocol: having small Update messages! The adversaries we
consider are adaptive while the security loss we achieve is only
quasipolynomial (or even polynomial) in the standard model
(in the ROM, resp.; see details below).

b) Activeness: One can classify adversaries with respect
to their power to interact with the protocol during the attack.
For example, the weakest form of adversary would be a
passive adversary, i.e. an eavesdropper that only observes the
communication but does not alter any messages. While the
strongest notion would be an active adversary who can behave
completely arbitrarily. In this work we consider “partially”
active adversaries who can arbitrarily schedule the messages
of the delivery server, and thus force different users into
inconsistent states. But we do not consider adversaries who
can arbitrarily deviate and for example use secret keys of
corrupted parties to create malformed messages. Restricting to
partially active adversaries is fairly common in this setting [2],
[8], [9] (also somewhat implied by the model of [10], where
communication must halt after an active attack). Achieving
or even defining meaningful security against fully active
adversaries is the subject of ongoing research [11].

c) Forward Secrecy: FS (and PCS) are standard notions
expected to hold in modern messaging protocols. However,
in contrast to the two-party setting, formalizing FS in the
group setting is more nuanced. One natural notion is to require
that a key is secure if all parties have performed an update

271

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

before being corrupted. This is the notion considered in [7]
and the one we adopt here and call it standard FS. In contrast,
[3] defines a stronger notion we refer to as strong FS. It
requires keys to be secure as soon as possible subject to not
violating basic completeness of the CGKA protocol. However,
this is only required in executions where protocol packets
are delivered in the same order to all group members.6 The
construction in [3] in fact achieves strong FS, but only for
adversaries that are much less active than ours. We provide
some details in the next section.

1) The safe predicate: Providing PCS and FS requires
to clearly define which keys we expect to be secure given
a sequence of adversarial actions. Given the asynchronous
setting where group members might be in different states,
and an active adversary that may force users into inconsistent
states, this is quite involved. Note that group members might
even have different views of who is currently a member of the
group. We give a compact and intuitive predicate that captures
exactly what PCS and FS guarantees TTKEM provides.

2) The reduction in the standard model via piecewise
guessing: Recall that there is a trivial reduction between
selective and adaptive adversaries that simply guesses the
necessary information and fails if the guess was incorrect.
This loses an exponential factor in the amount of information
that needs to be guessed. Jafargholi et al. [12] proposed a
general framework (often refered to as piecewise guessing)
that allows to reduce this loss under certain conditions. The
resulting loss depends on the graph structure that naturally
arises from the security experiment. Applying the framework
in the obvious way (which already requires non-trivial effort)
we achieve a quasipolynomial security loss ≈ (Q · n)2 log(n),
where n is an upper bound on the number of group members
and Q is the number of Init/Update/Remove/Add queries the
adversary issues) against partially active adversaries. Using a
more careful analysis and taking the more restrictive structure
of the queries and the graph constructed in the TTKEM
security game into account, we can improve this to ≈ Qlog(n).
Our proof relies on [12] and requires familiarity with the
framework, but is fully rigorous. We note that all steps of the
proof strategy also apply to TreeKEM, and so an equivalent
proof for it would easily follow.

3) The reduction in the ROM: In (Tainted) TreeKEM, a
node is identified with a short seed s, from which the pub-
lic/secret key pairs of this node are derived. If the randomness
used to sample those keys is a hash of s, and we model this
hash as a random oracle, we can give a much better polynomial
bound for the adaptive security of TTKEM.

This proof is very different from the proof in the standard
model and does not use the piecewise guessing framework.
Some of the techniques resemble a security proof of Logical
Key Hierarchies (cf. Section I-D) by Panjwani [13], but
otherwise the proof is entirely self-contained and novel. Again,
our proof can also be applied to TreeKEM. As a sidenote,

6Going even further, the (efficient but impractical) CGKA protocols of [11]
enjoys optimal FS. That is keys must become secure as soon as possible for
arbitrary delivery order. In fact, 2 of their protocols enjoy optimal FS even
against adversaries that can arbitrarily manipulate and generate traffic; a type
of active security even stronger than the one considered in this work.

we prove and employ a new result on a public-key version
of generalized selective decryption (GSD, an abstraction of
security experiments involving encryptions of keys) in the
ROM, which we believe to be of independent interest.

D. Related Work

The basic idea of TreeKEM can be traced back to Logical
Key Hierarchies (LKH) [14], [15], [16]. These were introduced
as an efficient solution to multicast key distribution (MKD),
where a trusted and central authority wants to encrypt mes-
sages to a dynamically changing group of receivers. Clearly,
the main difference to continuous group key agreements is the
presence of a central authority that distributes the keys to users
and may add and remove users. At the heart of TreeKEM is the
realization that if one replaces symmetric key encryption with
public key encryption in LKH, then any group member can
perform the actions that the central authority does in MKD.
But, as described above, this introduces the problem that some
users now know the secret keys in parts of the tree they are not
supposed to, which creates security problems. This is where
the main novelties of TreeKEM and follow up work lies: in
providing mechnanisms to achieve PCS and FS nonetheless.

LKH has been proven secure even against adaptive adver-
saries with a quasi-polynomial time bound [13]. Unfortunately,
there are several important differences between LKH that do
not allow us to simply rely on [13] to prove TTKEM or
TreeKEM secure: 1) their proof is in the symmetric key set-
ting, while we are using public key encryption; 2) their proof
assumes a central authority and there is no concept of PCS
or FS; 3) for efficiency reasons, TTKEM and TreeKEM use
hierarchical key derivation, which the proof in [13] does not
take into account (even though it had already been proposed
in optimized versions of LKH [16]) and it is a priori unclear
how this affects the proof; 4) we are also interested in proving
security in the ROM, which, as we show, gives tighter bounds.

Since the appearance of the double ratchet algorithm [17],
implemented in applications like Signal or Whatsapp, secure
messaging has received a lot of attention, particularly in the
two party case [18], [10], [19], [9], [20], [2]. In the group
setting, the main example of such a protocol is TreeKEM
[5], [6], currently in development by the IETF MLS working
group. Its predecesor was the ART protocol [4], whose pro-
posal motivated the creation of the mentioned working group.
A study of PCS in settings with multiple groups was done
by Cremers et al.[8], and Weidner [21] explored a variant
of TreeKEM allowing for less reliance on the server for
correctness. Finally, in a follow-up work, Alwen et al. [11]
study the security of CGKA protocols against insider attacks.

rTreeKEM: Recently, Alwen et al. [3] introduced an-
other variant of TreeKEM, termed re-randomized TreeKEM
(rTreeKEM). Since their paper structure shares similarities
with ours, we will discuss the differences between them.

First, it should be noted that the aims of the protocols are
very different: while TTKEM seeks to improve the efficiency
of TreeKEM by removing the need for blanks, rTreeKEM’s
focus is on improving its forward secrecy guarantees to
achieve strong FS. However, we see no reason why one could
not combine both protocols, endowing TTKEM with strong

272

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

Constraints on PKE Forward Secrecy Adversary Tightness
Selective Adaptive

ART [4] ElGamal (or any other with Standard Passive O(n) (ROM) Ω ((nQ)n) (ROM)a contributive NIKE)
TreeKEM [6]** None Standard Passive O (n) (SM) Ω ((nQ)n) (SM) *
rTreeKEM [3] UPKE Strong Passive O (n) (ROM) Ω ((nQ)n) (ROM) *

TTKEM (this work) None Standard Partially active O(n) (SM,ROM) O
(
n2Qlog(n)

)
(SM)

O
(
(nQ)2

)
(ROM)

TABLE I: Table depicting the different security levels satisfied by CGKA protocols. The first two columns correspond to protocol characteristics, and the
right-most three to the best known proofs. SM and ROM stand Standard and Random Oracle Models, respectively. (*) These would follow from the selective
proof via a straightforward complexity leveraging argument. Such an argument is implicit in the proof of [4]. (**) [3] provides a sketch for a proof against
passive adaptive adversaries with a quasi-polynomial loss in the SM; this paper suggests proofs against part. active, adaptive adversaries both in the SM and
ROM, with the same tightness as the ones for TTKEM.

FS. Moreover, it seems plausible that the proof techniques
developed in this work can also be applied to the rTreeKEM
construction or to the combination of the two.

Second, their work already defines CGKA as an abstraction
of the main problem TreeKEM aims to solve. We use their
completeness notion, but add a Confirm and Deliver algorithm
to their definition. The reason for this is that we work in the
more general model that allows a malicious delivery server, i.e.
the adversary can reorder and withhold messages at will. The
model in [3] requires the delivery server to be basically honest:
the server can delay, but never send inconsistent messages to
parties, i.e. the adversary in [3] is almost passive.

Last, both works provide security proofs, albeit these differ
considerably. Their paper provides proofs for both TreeKEM
and rTreeKEM with a polynomial security loss, although these
concern selective security only. They also sketch a security
proof against adaptive adversaries losing a quasi-polynomial
factor (for TreeKEM in the standard model, for rTreeKEM in
the ROM). In contrast, we give formal proofs for the adaptive
security of TTKEM with only polynomial loss in the ROM and
quasi-polynomial in the standard model; and, as mentioned,
against a stronger partially active adversary. Also, proofs with
the same bounds would follow for TreeKEM.
E. Impact on MLS

As of writing, the current version of the MLS draft (MLS
v9) differs substantially from TTKEM, mainly due to the
Proposal-Commit structure. However, it should be noted that
TTKEM can be cast in that same fashion, as it is indeed done
in [11]. As with TreeKEM, the application of this framework
would bring an efficiency tradeoff that should be studied
carefully and which we leave for further work, though noting
the challenge in doing so without real world data. As for our
security proofs, a security proof for TreeKEM follows from
the one given in the paper, so we believe this work to be of
relevance to the MLS community.

II. DESCRIPTION OF TTKEM
A. Asynchronous Continuous Group Key Agreement Syntax
Definition 1 (Asynchronous Continuous Group Key Agree-
ment). An asynchronous continuous group key agreement
(CGKA) scheme is an 8-tuple of algorithms CGKA =
(keygen, init, add, rem, upd, dlv, proc, key) with the following
syntax and semantics:
KEY GENERATION: Fresh InitKey pairs are generated using

(pk, sk)← keygen(1λ) by users prior to joining a group.
Public keys are used to invite parties to join a group.

INITIALIZE A GROUP: For i ∈ [2, n] let pki be an InitKey PK
belonging to party IDi. Let G = (ID1, . . . , IDn). Party ID1

creates a new group with membership G by running:

(γ, [W2, . . . ,Wn])← init (G, [pk1, . . . , pkn])

and sending welcome message Wi for party IDi to the
server. Finally, ID1 stores its local state γ for later use.

ADDING A MEMBER: A group member with local state γ can
add party ID to the group by running (γ′,W, T) ←
add(γ, ID, pk) and sending welcome message W for
party ID and the add message T for all group members
(including ID) to the server. He stores the old state γ and
new pending state γ′ until getting a confirmation from the
delivery server as defined below.

REMOVING A MEMBER: A group member with local state γ
can remove group member ID by running (γ′, T) ←
rem(γ, ID) and sending the remove message T for all
group members (incl.ID) to the server and storing γ, γ′.

UPDATE: A group member with local state γ can perform an
update by running (γ′, T) ← upd(γ) and sending the
update message T for all group members to the server
and storing γ, γ′.

CONFIRM AND DELIVER: The delivery server upon receiv-
ing a (set of) CGKA protocol message(s) T (including
welcome messages) generated by a party ID by running
dlv(ID, T) either sends T to the corresponding member(s)
and sends a message confirm to ID, in which case ID
deletes it’s old state γ and replaces it with the new
pending state γ′, or sends a message reject to ID, in
which case ID deletes γ′.

PROCESS: Upon receiving an incoming (set of) CGKA pro-
tocol message(s) T (including welcome messages) a
party immediately processes them by running (γ, I) ←
proc(γ, T).

GET GROUP KEY: At any point a party can extract the
current group key I from its local state γ by running
(γ, I)← key(γ).

We remark that while the protocol allows any group member
to add a new party to the group as well as remove any member
from the group it is up to the higher level message protocol (or
even higher level application) to decide if such an operation
is indeed permitted. (If not, then clients can always simply
choose to ignore the add/remove message.) At the CGKA
level, though, all such operations are possible.

273

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

B. Overview

In this work, a directed binary tree T is defined recursively
as a graph that is either the empty graph, a root node, or a
root node whose parents are root nodes of trees themselves.
Note that this corresponds to a standard definition of trees with
reversed edges. We choose this definition since it is much more
intuitive in our context and highlights the connection between
the protocol and the GSD game used for the security proof (cf.
Definition 7). Note that paths in the tree now start at leaves
and end at the root node. The nodes in the tree are associated
with the following values: a seed ∆; a secret/public key pair
derived deterministically as (pk, sk) ← Gen(∆); a credential
(leaf nodes only); and a tainter ID (all nodes but leaves and
root). The root has no associated public/secret key pair, instead
its seed is the current group key.

To achieve FS and PCS, and to manage group membership,
it is necessary to constantly renew the secret keys used in
the protocol. We will do this through the group operations
Update, Remove and Add. We will use the term refresh to
refer to the renewal of a particular (set of) key(s) (as opposed
to the group operation). Each group operation will refresh a
part of the tree, always including the root and thus resulting
in a new group key which can be decrypted by all members of
the current group. Users will also have a list of Initialization
Keys (init keys) stored in some key-server, widely available
and regularly updated, and used to add users to new groups.

Each group member should have a consistent view of the
public information in the tree, namely public keys, credentials,
tainter IDs and past operations. We assume that a party
will only process operations issued by parties that (at the
time of issuing) shared the same view of the tree. This can
easily be enforced by adding a (collision-resistant) hash of
the operations processed so far [10], [9]7. Furthermore, group
members will have a partial view of the secret keys. More
precisely, every user has an associated protocol state γ(ID) (or
state for short when there is no ambiguity), which represents
everything users need to know to stay part of the group (we
implicitly assume a particular group, considering different
groups secrets independent). In particular, we define a state
as the triple γ(ID) = (M, T ,H), where M denotes the set
of group members (i.e. ID’s that are part of the group); T
denotes a binary tree as above, with each group member’s
their credential associated to a leaf node; and H denotes the
hash of the group transcript so far, to ensure consistency. Each
user also has a, typically empty, pending state γ′(ID) which
stores the updated group state resulting from the last issued
group operation while they wait for confirmation.

As mentioned, a user will generally not have knowledge of
the secret keys associated to all tree nodes. However, if they
add or remove parties, they will potentially gain knowledge of
secret keys outside their path. We observe that this will not
be a problem as long as we have a mechanism to keep track
of those nodes and refresh them when necessary, towards this
end we introduce the concept of tainting.

7For efficiency reasons one could use a Merkle-Damgård hash so that from
the hash of a (potentially long) string T we can efficiently compute the hash
of T concatenated with a new operation t.

a) Tainting.: Whenever party IDi refreshes a node not
lying on their path to the root, that node becomes tainted by
IDi. Whenever a node is tainted by a party IDi, that party has
potentially had knowledge of its current secret in the past. So,
if IDi was corrupted in the past, the secrecy of that value is
considered compromised (even if IDi deleted that value right
away and is no longer compromised). Even worse, all values
that were encrypted to that node are compromised too. We will
assign a tainter ID to all nodes. This can be empty, i.e. the node
is untainted, or corresponds to a single party’s ID, that who
last generated this node’s secret but is not supposed to know
it. The tainted ID of a node is determined by the following
simple rule: after ID issues an operation, all refreshed nodes
on ID’s path become untainted; in turn, all refreshed nodes not
on ID’s path become tainted by ID.

b) Hierarchical derivation of updates.: When refreshing
a whole path we sample a seed ∆0 and derive all the secrets
for that path from it. This way, we reduce the number of
decryptions needed to process the update, as parties only need
to recover the seed for the “lowest” node that concerns them,
and then can derive the rest locally. To derive the different
new secrets we follow the specification of TreeKEMv9 [6].
Essentially, we consider a hash function H , fix two tags x1 and
x2 and consider the two hash functions H1, H2 with Hi(·) =
H(·, xi). Together with a Gen function that outputs a secret-
public key pair, we derive the keys for the nodes as∆i+1 :=
H1(∆i) and (ski, pki)← Gen(H2(∆i)) where ∆i is the seed
for the ith node (the leaf being the 0th node, its child the 1st
etc.) on the path and (ski, pki) its new key pair. For the proof
in the standard model we only require Hi to be pseudorandom
functions, with ∆i the key and xi the input.

With the introduction of tainting, it is no longer the case that
all nodes to be refreshed lie on a path. Hence, we partition
the set of all the nodes to be refreshed into paths and use
a different seed for each path. Any unambiguous ordered
optimal partition will suffice. The only condition required is
that the updating of paths is done in a particular common order
that allows for encryptions to to-be-refreshed nodes to be done
under the respective updated public key (one cannot hope for
PCS otherwise). An example is provided in the appendix.

Let us stress that a party processing an update involving
tainted nodes might need to retrieve and decrypt more than
one encrypted seeds, as the refreshed nodes on its path might
not all be derived hierarchically. Nonetheless, party needs to
decrypt at most log n ciphertexts in the worst case.

C. TTKEM Dynamics

Whenever a user IDi wants to perform a group operation,
she will generate the appropriate Initialize, Update, Add
or Remove message, store the updated state resulting from
processing such message in γ′, and send the appropriate
information to the delivery server, which will then respond
with a confirm or reject, prompting IDi to move to state γ′

(i.e. set γ ← γ′) or to delete γ′ respectively. If the (honest)
delivery server confirms an operation, it will also deliver it to
all the group members, who will process it and update their
states accordingly. Messages should contain the identity of the
sender, the operation type, encryptions of the new seeds, any

274

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Path partition resulting from an update by Charlie (3rd leaf node),
with nodes tainted by him shown in black. To process it the grey node must
be updated before the green path and the blue path before Charlie’s (in red).

new public keys, and a hash of the transcript so far, ensuring
consistency. A more detailed description, as well as pseudo-
code for the distinct operations is presented in B1.

a) Initialize.: To create a new group with parties M =
{ID1, . . . , IDn}, a user ID1 generates a new tree T , where the
leaves have associated the init keys corresponding to the group
members. The group creator then samples new key pairs for all
the other nodes in T (optimizing with hierarchical derivation)
and crafts welcome messages for each party. These welcome
messages should include an encryption of the seed that allows
the computation of the keys of the appropriate path, together
with M and the public part of T .

b) Add.: To add a new member IDj to the group, IDi

identifies a free spot for them, hashes her secret key together
with some freshly sampled randomness to obtain a seed ∆8,
and derives seeds for the nodes along the path to the root.
She then encrypts the new seeds to all the nodes in the co-
path (one ciphertext per node suffices given the hierarchical
derivation) and sends them over together with the identity IDj

of the added party. IDi will also craft a welcome message for
the added party containing an encryption of the appropriate
seed, M, H and the public part of T .

c) Update.: To perform an Update, a user computes a
path partition for the set nodes not on her path that need to be
refreshed (nodes tainted or with a tainted ancestor), samples
a seed per such path, plus a seed for their path, and derives
the new key-pairs for each node, as described above. She then
encrypts the secret keys under the appropriate public keys in
the copaths and sends this information to the server.

d) Remove.: To remove IDj , user IDi performs an Update
as if it was IDj , refreshing all nodes in IDj’s path to the root,
as well as all her tainted nodes (which will become tainted
by IDi after the removal). Note that a user cannot remove
itself. Instead, we imagine a user could request for someone
to remove her and delete her state.

e) Process.: When a user receives a protocol message
T, it identifies which kind of message it is and performs
the appropriate update of their state, by updating the list of
participants if necessary, overwriting any keys, and updating
the tainted ID’s. If it is a confirm or a reject, i.e. it was an

8This way the new keys will be secure against an adversary that does
not have either knowledge of IDi’s secret key or control/knowledge of the
randomness used.

operation issued by himself, he updates the current state γ to
γ′ or simply deletes γ′, respectively
D. Comparison with Blanking

In terms of security there is little difference between what
is achieved using tainting and using blanking. Updates have
the same function: they refresh all known secrets, allowing for
FS and PCS through essentially the same mechanism in both
approaches. However, as mentioned before, tainting seems to
be a more natural approach: it maintains the desired tree struc-
ture, and its bookkeeping method gives us a more complete
intuition of the security of the tree. It also corresponds to a
more flexible framework: since blanking simply forbids parties
to know secrets outside of their path, it leaves little flexibility
for how to handle the init phase.

With regards to efficiency, the picture is more complicated.
TTKEM and TreeKEM9 are incomparable in the sense that
there exist sequences of operations where either one or the
other is more efficient. Thus, which one is to be preferred de-
pends on the distribution of operation sequences. We observe
that there are two major differences in how blank and tainted
nodes affect efficiency. The first one is in the set of affected
users: a blank node degrades the efficiency of any user whose
copath contains the blank. Conversely, a tainted node affects
only one user; that who tainted it, but on the down side, it
does so no matter where in the tree this tainted node is. The
second difference is the healing time: to “unblank” a node v
it suffices that some user assigned to a leaf in the tree rooted
at v refreshes it (thereby overwriting the blank with a fresh
key). However, to “untaint” v, simply overwriting it this way
is necessary but not sufficient. In addition, it must also hold
that no other node in the tree rooted at v is tainted.

Thus, intuitively, in settings where the tendency is for
Adds and Remove operations (i.e. those that produce blanks
or taintings) to be performed by a small subset of group
members it is more efficient to use the tainting approach.
Indeed, only Update operations done by that subset of users
will have a higher cost. As mentioned in the introduction, such
a setting can arise quite naturally in practice – e.g. when group
membership is managed by a small number of administrators.

To test this, we ran simulations comparing the number of
ciphertexts (cost) users need to compute on average as a conse-
quence of performing Updates, Adds and Removes. Ideally, we
would like to sample a sequence of group operations, execute
them in both protocols and compare the total cost. However,
this seems infeasible: in TreeKEM operations are collected
into Commits, whereas in TTKEM these are applied one by
one, separately. Hence, we compared TTKEM (referred to as
tainted in the graphs) against two different simplified versions
of TreeKEM, between which real TreeKEM lies efficiency-
wise. The first version (TKEM), more efficient than actual
TreeKEM, ignores Commits and just executes operations one
by one, without the Update that would follow every Commit.
The second version (TKEM commit), less efficient than the
real TreeKEM, enforces that every operation is committed
separately, essentially performing an extra Update operation
after every Add or Remove.

9We compare TTKEM with the most recent version TreeKEMv9.

275

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

We simulated groups of sizes between 23 and 215 members.
Trees of size 2i were initialized with 2i−1 members and
sequences of 10 ∗ 2i Update/Remove/Add operations were
sampled according to a 8 : 1 : 1 ratio. One would expect
for many more Updates than Add/Removes to take place; but
also, the more common updates are, the closer that efficiency
is going to be to that of naı̈ve TreeKEM for both TreeKEM
and TTKEM. Thus, this seems a reasonable ratio that also
highlights the differences between the protocols - it is also
the ratio used by R. Barnes in the simulation of TreeKEM
with blanking posted in the IETF MLS mailing list10. We test
two different scenarios. In the first one we limit the ability
of adding and removing parties to a small subset of users, the
administrators. In the second, we make no assumption on who
performs Adds and Removes and sample the authors of these
uniformly at random.

To simulate the administrator setting (figures 3, 4 and
5), we set a small (1 per group in groups of size less tan
128 and 1 per every 64 users in bigger groups) random set
of users to be administrators. Adds and Removes are then
performed by one of those administrators sampled uniformly
at random. The removed users, as well as the authors of the
updates were also sampled uniformly at random. Figures 3
and 4 illustrate that TTKEM allows for an interesting trade-
off, where non-administrators enjoy more efficient Updates at
the expense of potentially more work for administrators. This
would be favourable in settings where administrators have
more bandwidth or computational power. When considering
the average cost incurred by group member, admins or non-
admins (figure 5), all three protocol perform similarly for
smaller groups, with TTKEM behaving better asymptotically.

In the second scenario (figures 6 and 7), where Adds
and Removes are performed by users sampled uniformly,
the results are similar: all protocols perform comparably on
smaller groups, with TTKEM behaving more efficiently on
larger groups. Here, we distinguish two further situations
depending on the distribution on Update authors (or updaters
for short). Figure 6 shows the results of sampling updaters
uniformly at random. This would reflect scenarios where
Updates are executed periodically, as in e.g. devices that are
always online and where a higher level policy stipulates to
update daily. In contrast, figure 7 shows the results of sampling
updaters following a Zipf distribution. The Zipf distribution is
used widely to model human activity in interactive settings.
Recently, a study on messages sent on internet communities
shows that the growth of messages sent per individual over
time follows Gibrat’s law [22]. This in turn implies that the
distribution of the number of messages sent per individual at
a point in time converges asymptotically to a Zipf distribution
[23]. Thus, the latter scenario models a setting where Updates
are correlated with the level of activity of the users, e.g. when
the devices used are not always online.

Overall, while we cannot say TTKEM will be more efficient
than TreeKEM in every setting, it is clear that it constitutes
a promising CGKA candidate, which can bring efficiency

10[MLS] Cost of the partial-tree approach. Richard Barnes {rlb@ipv.sx}
01 October 2018 https://mailarchive.ietf.org/arch/msg/mls/hhl0q-
OgnGUJS1djdmH1JBMqOSY/

improvements over TreeKEM in different realistic scenarios.
Moreover, we would also like to point out that to improve
the efficiency of these protocols, different policies can be
implemented, such as strategically placing users on the tree:
e.g. distributing administrators or frequent updaters closer to
the right side of the tree, where more new users will be added.

III. SECURITY

We will prove security for TTKEM against fully adaptive,
partially active adversaries, even when group members are in
inconsistent states. In section III-A we present the security
game we consider and in section III-B we present a simple
predicate which allows to determine for which group keys
we can guarantee security. The latter predicate incorporates
the intuition that Updates allow a party to heal her state.
It should be noted that we consider initialization keys as
representing identities, as otherwise we would neglect some
other cases which we would intuitively also consider secure,
such as removing a corrupted party and adding them again
once uncorrupted (this is secure per our predicate as they
would be treated as a new identity, generated at the time the
init key was).

Throughout our proofs, we only consider a single challenge
per game for simplicity; a standard hybrid argument allows
us to extend security to multiple challenges, with a loss
linear in the number of challenges. In order to simulate extra
challenges, an extra oracle that reveals group keys would be
needed, but this would have no effect on the security proof -
in particular GSD-like proofs already allow for the corruption
of individual keys.

A. Security Model

Definition 2 (Asynchronous CGKA Security). The security for
CGKA is modelled using a game between a challenger C and
an adversary A. At the beginning of the game, the adversary
queries create-group(G) and the challenger initialises the
group G with identities (ID1, . . . , ID`). The adversary A can
then make a sequence of queries, enumerated below, in any
arbitrary order. On a high level, add-user and remove-user
allow the adversary to control the structure of the group,
whereas the queries confirm and process allow it to control
the scheduling of the messages. The query update simulates
the refreshing of a local state. Finally, start-corrupt and
end-corrupt enable the adversary to corrupt the users for
a time period. The entire state (old and pending) and random
coins of a corrupted user are leaked to the adversary during
this period.

1) add-user(ID, ID′): a user ID requests to add another
user ID′ to the group.

2) remove-user(ID, ID′): a user ID requests to remove
another user ID′ from the group.

3) update(ID): the user ID requests to refresh its current
local state γ.

4) confirm(q, β): the q-th query in the game, which must
be an action a ∈ {add-user, remove-user,update} by
some user ID, is either confirmed (if β = 1) or rejected
(if β = 0). In case the action is confirmed, C updates

276

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Cost for non-administrators Fig. 4: Cost for administrators Fig. 5: Average cost per user

Fig. 6: Updaters follow uniform dist. Fig. 7: Updaters follow Zipf dist.

ID’s state and deletes the previous state; otherwise ID
keeps its previous state).

5) process(q, ID′): if the q-th query is as above, this action
forwards the (W or T) message to party ID′ which
immediately processes it.

6) start-corrupt(ID): from now on the entire internal state
and randomness of ID is leaked to the adversary.

7) end-corrupt(ID): ends the leakage of user ID’s internal
state and randomness to the adversary.

8) challenge(q∗): A picks a query q∗ corresponding to an
action a∗ ∈ {add-user, remove-user,update} or the
initialization (if q∗ = 0). Let k0 denote the group key
that is sampled during this operation and k1 be a fresh
random key. The challenger tosses a coin b and – if the
safe predicate below is satisfied – the key kb is given
to the adversary (if the predicate is not satisfied the
adversary gets nothing).

At the end of the game, the adversary outputs a bit b′ and wins
if b′ = b. We call a CGKA scheme (Q, ε, t)-CGKA-secure if
for any adversary A making at most Q queries of the form
add-user(·, ·), remove-user(·, ·), or update(·) and running in
time t it holds

AdvCGKA(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ε.

B. The Safe Predicate

We define the safe predicate to rule out trivial winning
strategies and at the same time restrict the adversary as little
as possible. For example, if the adversary challenges the first
(create-group) query and then corrupts a user in the group, he
can trivially distinguish the real group key from random. Thus,
intuitively, we call a query q∗ safe if the group key generated in
response to query q∗ is not computable from any compromised
state. Since each group key is encrypted to at most one init
key for each party, this means that the users which are group

members11 at time q∗ must not be compromised as long as
these init keys are part of their state. However, defining a
reasonable safe predicate in terms of allowed sequences of
actions is very subtle.

To gain some intuition, consider the case where query q∗

is an update for a party ID∗. Then, clearly, ID∗ must not
be compromised right after it generated the update. On the
other hand, since the update function was introduced to heal
a user’s state and allow for PCS, any corruption of ID∗ before
q∗ should not harm security. Similarly, any corruption of ID∗

after a further processed update operation for ID∗ should not
help the adversary either (compare FS). Finally, also in the
case where the update generated at time q∗ is rejected to ID∗

and ID∗ processes this message of the form confirm(q∗, 0)
by returning to its previous state, any corruption of ID∗ after
processing the reject message should not affect security of the
challenge group key. All these cases should be considered safe.

Additionally, we have to take care of other users which
are part of the group when the challenge key is generated:
For a challenge to be safe, we must make sure that the
challenge group key is not encrypted to any compromised key.
At the same time, one has to be aware of the fact that in the
asynchronous setting the view of different users might differ
substantially. As mentioned above, we consider inconsistency
of user’s states rather a matter of functionality than security,
and aim to define the safe predicate as unrestrictive as possible,
to also guarantee security for inconsistent group states. For
example, consider the following scenario: user ID generates an
update during an uncompromised time period and processes a
reject for this update still in the uncompromised time period,
but this update is confirmed to and processed by user ID∗

before he does his challenge update q∗; this results in a safe

11To be precise, since parties might be in inconsistent states, group
membership is not unique but rather depends on the users’ views on the group
state. We will discuss this below.

277

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

challenge, since the challenge group key is only encrypted
to the new init key, which is not part of ID’s state at any
compromised time point. However, one has to be careful here,
since in a similar scenario where ID does not process the reject
for its own update, the challenge group key would clearly not
be safe anymore.

For the following definitions we consider discrete time steps
measured in terms of the number of queries that have been
issued by the adversary so far.

We first identify for each user a critical window in the view
of a specific user ID∗. The idea is to define exactly the time
frame in which a user may leak a group key if ID∗ generates
it at a specific point in time and distributes it to the group.
Clearly, the users may not be corrupted in this time frame if
this happens to be the challenge group key.

Definition 3 (Critical window, safe user). Let ID and ID∗

be two (not necessarily different) users and q∗ ∈ [Q] be some
query. Let q− ≤ q∗ be the query that set ID’s current key in the
view of ID∗ at time q∗, i.e. the query q− ≤ q∗ that corresponds
to the last update message a−ID := update(ID) processed by
ID∗ at some point [q−, q∗] (see Figure 8). If ID∗ does not
process such a query then we set q− = 1, the first query.
Analogously, let q+ ≥ q− be the first query that invalidates
ID’s current key, i.e. ID processes one of the following two
confirmations:

1) confirm(a−ID, 0), the rejection of action a−ID; or
2) confirm(a+ID, 1), the confirmation an update a+ID :=

update(ID) 6= a−ID.
If ID does not process any such query then we set q+ = Q,
the last query. We say that the window [q−, q+] is critical for
ID at time q∗ in the view of ID∗. Moreover, if the user ID is
not corrupted at any time point in the critical window, we say
that ID is safe at time q∗ in the view of ID∗.

1 q−

ID ID∗

q∗ q+

ID

Q

a−ID a−ID confirm(a−ID, 0)

1 q−

ID ID∗

q∗

ID ID

q+

ID

Q

a−ID a−ID confirm(a−ID, 1) a+ID confirm(a+ID, 1)

Fig. 8: A schematic diagram showing the critical window for a user ID in
the view of another user ID∗ with respect to query q∗. An arrow from a user
to the timeline is interpreted as a request by the user, whereas an arrow in
the opposite direction is interpreted as the user processing the message. The
figure at top (resp., bottom) corresponds to the first (resp., second) case in
Definition 3.

We are now ready to define when a group key should be
considered safe. The group key is considered to be safe if all
the users that ID∗ considers to be in the group are individually
safe, i.e., not corrupted in its critical window, in the view of
ID∗. We point out that there is a exception when the action that
generated the group key sk∗ is a self-update by ID∗ where, to
allow healing, instead of the normal critical window we use
the window [q∗, q+] as critical.

Definition 4 (Safe predicate). Let sk∗ be a group key gener-
ated in an action

a∗ ∈ {add-user(ID∗, ·), remove-user(ID∗, ·),
update(ID∗), create-group(ID∗, ·)}

at time point q∗ ∈ [Q] and let G∗ be the set of users which
would end up in the group if query q∗ was processed, as viewed
by the generating user ID∗. Then the key sk∗ is considered safe
if for all users ID ∈ G∗ (including ID∗) we have that ID is
safe at time q∗ in the view of ID∗ (as per Definition 3) with the
following exceptional case: if ID = ID∗ and a∗ = update(ID∗)
then we require ID∗ to be safe w.r.t. the window [q∗, q+].

C. The Challenge Graph

In the last section, we defined what it means for a group
key to be safe via a safe predicate. In this section, we try to
interpret the safe predicate for the TTKEM protocol. That is,
our goal is to show that if the safe predicate is satisfied for
a group key ∆∗ generated while playing the CGKA game on
TTKEM, then none of the seeds or secret keys used to derive
this group key are leaked to the adversary (Lemma 1) — this
fact will be crucial in the next section (§III-E) where we argue
the security of TTKEM using the framework of Jafargholi et
al. [12]. To this end, we view the CGKA game for TTKEM
as a game on a graph and then define the challenge graph for
challenge group key ∆∗ as a sub-graph of the whole CGKA
graph.

a) The CGKA graph.: A node i in the CGKA graph for
TTKEM is associated with seeds ∆i and si := H2(∆i) and a
key-pair (pki, ski) := Gen(si) (as defined in §II). The edges
of the graph, on the other hand, are induced by dependencies
via the hash function H1 or (public-key) encryptions. To be
more precise, an edge (i, j) might correspond to either:

1) a ciphertext of the form Encpki(∆j); or
2) an application of H1 of the form ∆j = H1(∆i) used in

hierarchical derivation.
Naturally, the structure of the CGKA graph depends on
the update, add-user or remove-user queries made by the
adversary, and is therefore generated adaptively.

b) The challenge graph.: The challenge graph for ∆∗,
intuitively, is the sub-graph of the CGKA graph induced on
the nodes from which ∆∗ is trivially derivable. Therefore,
according to the definition of the CGKA graph, this consists
of nodes from which ∆∗ is reachable and the corresponding
edges (used to reach ∆∗). For instance, in the case where the
adversary maintains all users in a consistent state and there
are no tainted nodes, the challenge graph would simply be the
binary tree rooted at ∆∗ with leaves corresponding to init keys
of users in the group at that point. When the group view is
inconsistent among the users these leaves would correspond
to the init keys of users in the view of ID∗. Moreover, if
there are tainted nodes, the tree could also have (non-init key)
leaves corresponding to these tainted nodes. Below we state the
key lemma which connects the safe predicate to the challenge
graph of TTKEM; a proof can be found in the full version of
this paper.

Lemma 1. For any safe challenge group key in TTKEM it
holds that none of the seeds and secret keys in the challenge
graph is leaked to the adversary via corruption.

278

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

D. Security Proof for TTKEM in the Standard Model

To prove security of TTKEM in the standard model, we will
use the framework of Jafargholi et al. [12], with which we will
assume familiarity throughout this section and, particularly,
in Theorem 4. Recall that in the CGKA security game, the
aim of the adversary is to distinguish a safe challenge group
key ∆∗ from a uniformly random and independent seed. We
first consider the selective CGKA game, where the adversary
has to do all its queries at once. We call the two possible
executions of the game the real and random CGKA game
and aim to proof indistiguishability of these two games via a
sequence of indistinguishable hybrid games. Similar to several
other applications of the framework [12], we will define these
hybrid games via the so-called reversible black pebbling game,
introduced by Bennett [24], where, given a directed acyclic
graph with unique sink (here, the challenge graph), in each step
one can put or remove one pebble on a node following certain
rules, and the goal is to reach the pebbling configuration
where there is only one pebble on the sink of the graph. Each
pebbling configuration P` then uniquely defines a hybrid game
H`: a node v in the tree being pebbled means that in this hybrid
game whenever ∆v would be used to answer a query, a freshly
chosen random seed (independent of ∆v) is used instead in
the simulation. This applies to all cases where ∆v would be
used as input for H1 or H2, or as the challenge output (if
i is the challenge node). All remaining nodes and edges are
simulated as in the real CGKA game. Thus, the real game
Hreal is represented as the empty pebbling configuration P0

where there is no pebble at all, while the random game Hrandom

corresponds to the final configuration PL where only the sink
node is pebbled (L the length of the pebbling sequence).

Definition 5 (Reversible black pebbling). A reversible peb-
bling of a directed acyclic graph G = (V,E) with unique
sink sink is a sequence P = (P0, . . . ,PL) with P` ⊂ V
(` ∈ [0, L]), such that P0 = ∅ and PL = {sink}, and for all
` ∈ [L] there is a unique v ∈ V such that:
• P` = P`−1 ∪ {v} or P` = P`−1 \ {v},
• for all u ∈ parents(v): u ∈ P`−1.

By Lemma 1, we know that none of the seeds or secret keys
in the challenge graph is leaked to the adversary throughout the
entire game. This will allow us to prove indistinguishability
of subsequent hybrid games from IND-CPA security of the
underlying encryption scheme and pseudorandomness of the
hash functions H1, H2. Recall, the functions H1, H2 were
defined by a hash function H which takes some ∆i as
secret key and publicly known fixed strings x1, x2 as inputs.
To guarantee security, H is assumed to be a pseudorandom
function, where we will use the following non-standard but
equivalent (to the standard) definition of pseudorandomness:

Definition 6 (Pseudorandom function, alternative definition).
Let H : {0, 1}n × {0, 1}n → {0, 1}n be a keyed function. We
define the following game PRF(n): First, a key k ← {0, 1}n is
chosen uniformly at random and the adversary is given access
to an oracle H(k, ·). When the adversary outputs a string
x← {0, 1}n, a uniformly random bit b← {0, 1} is chosen and
the adversary receives either H(k, x) in the case b = 0, or y ∈

{0, 1}n uniformly at random if b = 1. Finally, the adversary
outputs a bit b′. If x was never queried to the oracle H(k, ·)
and b′ = b, then the output of the game is 1, otherwise 0. We
call H (ε, t)-pseudorandom if for all adversaries A running
in time t we have

AdvPRF(A) := |Pr[1← PRF(n)|b = 0]

− Pr[1← PRF(n)|b = 1]| < ε.

It is an easy exercise to prove that the above definition is
equivalent to the standard textbook definition of pseudorandom
functions (i.e., only a polynomial loss in security is involved
by the respective reductions).

Lemma 2. Let P = (P0, . . . ,PL) be a valid pebbling
sequence on the challenge graph. If H is an (ε, t)-secure
pseudorandom function and Π = (Gen,Enc,Dec) is an (ε, t)-
IND-CPA secure encryption scheme, then any two subsequent
hybrid games H`,H`+1 are (5 · ε, t)-indistinguishable12.

A proof of this lemma can be found in the full version of
this paper. Choosing a trivial pebbling sequence of the chal-
lenge graph, this already implies selective CGKA security of
TTKEM. Unfortunately, in the adaptive setting, the challenge
graph is not known to the reduction until the adversary does
its challenge query, but by this time it will be too late for the
reduction to embed a challenge, since seeds and public keys in
the challenge graph might have been used already before when
answering previous queries by the adversary. Thus, to simulate
a hybrid game H`, the reduction needs to guess (some of) the
adaptive choices the adversary will do. Naı̈vely, this would
result in an exponential security loss. However, the framework
of Jafargholi et al. [12] allows to do significantly better:

Theorem 3 (Framework for proving adaptive security, infor-
mal [12]). Let Greal, Grandom be two adaptive games, and
Hreal, Hrandom be their respective selective versions, where the
adversary has to do all its choices right in the beginning
of the game. Furthermore, let Hreal := H0,H1, . . . ,HL :=
Hrandom be a sequence of hybrid games such that each pair
of subsequent games can be simulated and proven (ε, t)-
indistinguishable by only guessing M bits of information on
the adversary’s choices. Then Greal and Grandom are (ε · L ·
2M , t)-indistinguishable.

The problem of proving CGKA security of TTKEM now
reduces to finding a sequence of indistinguishable hybrids
such that each hybrid can be simulated by only a small
amount of random guessing. Defining hybrid games via peb-
bling configurations as above and using the space-optimal
pebbling sequence for binary trees, described e.g. in [25,
Algorithm 1], which uses L = n2 steps and only 2 log(n) + 1
pebbles13, implies a security reduction for TTKEM with only

12Technically, the t in Lemma 2 changes slightly due to the reduction and
thus should not actually be the same t. For simplicity, in all our security
reductions we will ignore such miniscule running time overheads incurred by
simulating challengers of the security games or sampling (a small number of)
random bits.

13Although the original Lemma 3 in [25] states that 3 log(n) pebbles are
required to pebble a binary tree, the bound is loose since it is derived from
Lemma 2. It is not difficult to see that a tighter analysis of Algorithm 1 for
the case of binary trees leads to a bound of 2 logn + 1.

279

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

a quasipolynomial loss in security.

Theorem 4. If H is an (ε, t)-pseudorandom function and
Π = (Gen,Enc,Dec) is an (ε, t)-IND-CPA secure encryption
scheme, then TTKEM is (5 ·n2 ·Qlog(n)+2 · ε, t)-GCKA secure.

Proof. Note that the challenge graph is a complete binary tree
of depth log(n) in the worst case and let P = (P0, . . . ,PL)
be the recursive pebbling strategy for binary trees from [25],
which uses L = n2 steps and at most 2 log(n) + 1 pebbles.
We will prove that each pebbling configuration P` can be
represented using M = (log(n) + 2) · logQ bits. The claim
then follows by Lemma 2 and Theorem 3.

We need the following property of the strategy P: For all
` ∈ [0, L], there exists a leaf in the tree such that all pebbled
nodes lie either on the path from that leaf to the sink or on
the copath. Furthermore, the subgraph on this set of potentially
pebbled nodes contains 2 log(n)+1 nodes which are connected
by at most log(n) + 1 encryption and H1 edges, respectively.
Throughout the game, the reduction always knows in which
position in the binary tree a node ends up, but it does not
know which of the up to Q versions of the node will end up
in the challenge tree. However, nodes connected by an H1

edge are generated at the same time, so the reduction only
needs to guess for at most log(n) + 2 nodes which of the up
to Q versions of that node will be in the challenge graph. This
proves the claim.

Since the above proof mainly relies on the depth of the
challenge tree, it can easily be adapted to prove CGKA
security of TreeKEM, the main difference being the different
challenge graph structure induced by blanking.

E. Security Proof for TTKEM in the ROM

The security of TTKEM is closely related to the notion of
generalized selective decryption (GSD), which we adapt to the
public key setting for our purposes:

Definition 7 (Generalized selective decryption (GSD), adapted
from [13]). Let (Gen, Enc,Dec) be a public key encryption
scheme with secret key space K and message space M such
that K ⊆ M. The GSD game (for public key encryption
schemes) is a two-party game between a challenger C and
an adversary A. On input an integer N , for each v ∈ [N]
the challenger C picks a key pair (pkv, skv) ← Gen(r)
(where r is a random seed) and initializes the key graph
G = (V, E) := ([N], ∅) and the set of corrupt users C = ∅. A
can adaptively do the following queries:
• (encrypt, u, v): On input two nodes u and v, C returns

an encryption c = Encpku(skv) of skv under pku along
with pku and adds the directed edge (u, v) to E . Each
pair (u, v) can only be queried at most once.

• (corrupt, v): On input a node v, C returns skv and adds
v to C.

• (challenge, v), single access: On input a challenge node
v, C samples b← {0, 1} uniformly at random and returns
skv if b = 0, otherwise it returns a new secret key
generated by Gen using a new independent uniformly
random seed. In the context of GSD we denote the
challenge graph as the graph induced by all nodes from

which the challenge node v is reachable. We require that
none of the nodes in the challenge graph are in C, that G
is acyclic and that the challenge node v is a sink. Note
that A does not receive the public key of the challenge
node, since it is a sink.

Finally, A outputs a bit b′ and it wins the game if b′ = b. We
call the encryption scheme (ε, t)-adaptive GSD-secure if for
any adversary A running in time t it holds

AdvGSD(A) := |Pr[1← A|b = 0]− Pr[1← A|b = 1]| < ε.

We will apply the following general result for our version
of GSD, which could be of independent interest; a proof can
be found in the full version of this paper.

Theorem 5. For any public key encryption scheme Π =
(Gen,Enc,Dec) and hash function H let the encryption
scheme Π′ = (Gen′,Enc′,Dec′) be defined as follows: 1)
Gen′ simply picks a random seed s as secret key and runs
Gen(H(s)) to obtain the corresponding public key, 2) Enc′ is
identical to Enc and 3) Dec′, given the secret key s, extracts
the secret key from Gen(H(s)) and uses Dec to decrypt the
ciphertext.

If Π is (ε, t)-IND-CPA secure and H is modelled as a
random oracle, then Π′ is (ε̃, t)-adaptive GSD secure, where
ε̃ = ε · 2N2 + (mN)/(2l−1), with N the number of nodes, m
the number of oracle queries to H and l the seed length.

We now adapt the above proof to show a polynomial time
reduction for TTKEM in the random oracle model. Intuitively,
the CGKA graph corresponds to a GSD graph in the above
sense (i.e. for the transformed Π′, where H2 plays the role
of the RO), with the only difference that there are additional
edges corresponding to a second RO H1. The following
Theorem shows that this difference does not impact security;
a proof can be found in the full version of this paper.

Theorem 6. If the encryption scheme in TTKEM is (ε̃, t)-IND-
CPA secure and H1, H2 are modelled as random oracles, then
TTKEM is (Q, ε, t)-CGKA-secure, where ε = ε̃·8(nQ)2+negl.

We remark that, similarly to the previous proof, one can
easily adapt it to the case of TreeKEM (with blanking).

IV. CONCLUSION

We formalized and analyzed a proposed modification to
TreeKEM, the Continuous Group Key Agreement (CGKA)
algorithm that as of September 2020 is being considered
for standardization by the IETF ”Message Layer Security”
working group. First, we showed that the modification, termed
TTKEM, has the potential to achieve better efficiency than
TreeKEM for large groups in natural settings; and is there-
fore worth of further work and consideration. Second, we
formulated a novel and intuitive security model against active
and adaptive outsiders for a CGKA with Forward Secrecy
and Post-Compromise Security. Third, we provided security
proofs for TTKEM in both the standard and RO model,
bounding the security loss (to the underlying PKE) by a
quasipolynomial factor Qlog(n) and a polynomial factor (Qn)2

respectively, where n is the group size and Q the total number
of (update/remove/invite) operations. Our proof techniques can
easily be extended to TreeKEM.

280

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Message Layer Security (mls) WG,”
https://datatracker.ietf.org/wg/mls/about/.

[2] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet: Security
notions, proofs, and modularization for the Signal protocol,” in EU-
ROCRYPT 2019, Part I, ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol.
11476. Springer, Heidelberg, May 2019, pp. 129–158.

[3] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis, “Security analysis
and improvements for the ietf mls standard for group messaging,” in Ad-
vances in Cryptology – CRYPTO 2020, D. Micciancio and T. Ristenpart,
Eds. Cham: Springer International Publishing, 2020, pp. 248–277.

[4] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner,
“On Ends-to-Ends Encryption: Asynchronous Group Messaging with
Strong Security Guarantees.” CCS, 2018. [Online]. Available:
https://doi.org/10.1145/3243734.3243747

[5] K. Bhargavan, R. Barnes, and E. Rescorla, “TreeKEM: Asynchronous
Decentralized Key Management for Large Dynamic Groups,” May 2018.

[6] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-
Gordon, and R. Robert, “The Messaging Layer Security (MLS)
Protocol,” Internet Engineering Task Force, Internet-Draft draft-ietf-
mls-protocol-09, Mar. 2020, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-09

[7] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner, “On
ends-to-ends encryption: Asynchronous group messaging with strong
security guarantees,” in ACM CCS 2018, D. Lie, M. Mannan, M. Backes,
and X. Wang, Eds. ACM Press, Oct. 2018, pp. 1802–1819.

[8] C. Cremers, B. Hale, and K. Kohbrok, “Efficient post-compromise se-
curity beyond one group,” Cryptology ePrint Archive, Report 2019/477,
2019, https://eprint.iacr.org/2019/477.

[9] D. Jost, U. Maurer, and M. Mularczyk, “Efficient ratcheting: Almost-
optimal guarantees for secure messaging,” in EUROCRYPT 2019, Part I,
ser. LNCS, Y. Ishai and V. Rijmen, Eds., vol. 11476. Springer,
Heidelberg, May 2019, pp. 159–188.

[10] F. B. Durak and S. Vaudenay, “Bidirectional asynchronous ratcheted
key agreement with linear complexity,” in IWSEC 19, ser. LNCS,
N. Attrapadung and T. Yagi, Eds., vol. 11689. Springer, Heidelberg,
Aug. 2019, pp. 343–362.

[11] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk, “Continuous group key
agreement with active security,” in TCC 2020, Theory of Cryptography
Conference, Durham, NC, USA, November, 2020. [Online]. Available:
https://eprint.iacr.org/2020/752

[12] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and
D. Wichs, “Be adaptive, avoid overcommitting,” in CRYPTO 2017,
Part I, ser. LNCS, J. Katz and H. Shacham, Eds., vol. 10401. Springer,
Heidelberg, Aug. 2017, pp. 133–163.

[13] S. Panjwani, “Tackling adaptive corruptions in multicast encryption
protocols,” in TCC 2007, ser. LNCS, S. P. Vadhan, Ed., vol. 4392.
Springer, Heidelberg, Feb. 2007, pp. 21–40.

[14] D. M. Wallner, E. J. Harder, and R. C. Agee, “Key management for
multicast: Issues and architectures,” Internet Draft, Sep. 1998, http://
www.ietf.org/ID.html.

[15] C. K. Wong, M. G. Gouda, and S. S. Lam, “Secure group communica-
tions using key graphs,” in Proceedings of ACM SIGCOMM, Vancouver,
BC, Canada, Aug. 31 – Sep. 4, 1998, pp. 68–79.

[16] R. Canetti, J. A. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas,
“Multicast security: A taxonomy and some efficient constructions,” in
IEEE INFOCOM’99, New York, NY, USA, Mar. 21–25, 1999, pp. 708–
716.

[17] T. Perrin and M. Marlinspike, “The Double Ratchet Algorithm,”
https://signal.org/docs/specifications/doubleratchet/, 2016.

[18] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs,
“Ratcheted encryption and key exchange: The security of messaging,”
in CRYPTO 2017, Part III, ser. LNCS, J. Katz and H. Shacham, Eds.,
vol. 10403. Springer, Heidelberg, Aug. 2017, pp. 619–650.

[19] J. Jaeger and I. Stepanovs, “Optimal channel security against fine-
grained state compromise: The safety of messaging,” in CRYPTO 2018,
Part I, ser. LNCS, H. Shacham and A. Boldyreva, Eds., vol. 10991.
Springer, Heidelberg, Aug. 2018, pp. 33–62.

[20] B. Poettering and P. Rösler, “Towards bidirectional ratcheted key
exchange,” in CRYPTO 2018, Part I, ser. LNCS, H. Shacham and
A. Boldyreva, Eds., vol. 10991. Springer, Heidelberg, Aug. 2018, pp.
3–32.

[21] Matthew A. Weidner, “Group Messaging for Secure Asynchronous
Collaboration,” Master’s thesis, University of Cambridge, June 2019.

[22] D. Rybski, S. V. Buldyrev, S. Havlin, F. Liljeros, and H. A. Makse,
“Scaling laws of human interaction activity,” Proceedings of the
National Academy of Sciences, vol. 106, no. 31, pp. 12 640–12 645,
2009. [Online]. Available: https://www.pnas.org/content/106/31/12640

[23] X. Gabaix, “Zipf’s law for cities: An explanation,” The Quarterly
Journal of Economics, vol. 114, no. 3, pp. 739–7675, 1999. [Online].
Available: https://doi.org/10.1162/003355399556133

[24] C. H. Bennett, “Time/space trade-offs for reversible computation,” SIAM
J. Comput., vol. 18, no. 4, pp. 766–776, 1989.

[25] G. Fuchsbauer, C. Kamath, K. Klein, and K. Pietrzak, “Adaptively secure
proxy re-encryption,” in PKC 2019, Part II, ser. LNCS, D. Lin and
K. Sako, Eds., vol. 11443. Springer, Heidelberg, Apr. 2019, pp. 317–
346.

APPENDIX

A. Notation

Throughout the remaining document we will use the func-
tions child, parents, partner to refer to the child,
parents and partner (the other parent of the child) of any
given node. The function index(ID) returns the leaf ID
has assigned, and get_pk, get_sk, get_tainter the
public key, secret key and tainter ID of a given node re-
spectively. Similarly, the binary functions set_pk(vi, pki),
set_sk(vi, ski) and set_tainter(vi, ID) overwrite the
public key, secret key or tainter ID associated to vi. We
will use the function path to recover the nodes in the
path of a user (’s leaf) to the root. Further, we use
get_members(), get_tree(), get_hash() to recover
the member list, tree or transcript hash from a state. To
update one’s view of group state, we use the functions
add_party(ID, pk) to add ID to the leftmost free spot in the
tree; remove_party(ID) to remove ID; update_hash(T)
to update our transcript hash with the message T ;
init_state(M, T ,H) to initialize our state after join-
ing; and update_pks_and_tainter(new pks, ID, ID′)
to update the public keys of nodes corresponding to ID, and
changing their tainter ID to ID’. We will need to sample fresh
random seeds to generate new key pairs when refreshing a
path, we do this through gen-seed.

B. Path partitions

When updating, a user needs to partition the set of extra
nodes to be refreshed (nodes not on their path with a tainted
ancestor) into paths, so that a single seed can be used to update
each path. Formally, for a user id, we want a set of paths
Pi = {vi,0, . . . , vi,mi} such that every tainted node is in some
path Pi and moreover:
• child(vi,j) = vi,j+1 for j < mi (Pi is a path)
• vi,j 6= vk,l if i 6= k for any j, l (each node is only in one

path)
• get_tainter(vi,0) = id (the start of each path is a

node tainted by id)
• ∀i, j : child(vi,mi

) 6= vj,0 (paths are maximal)
• Pi

⋂
Pid = ∅ (paths are disjoint from main path to root)

• child(vi,mi
) ∈ Pid ∨ child(vj,mj

) ∈ Pi with i < j
(the partition is unique)

• vi,0 < vj,0 if i < j (there is a total ordering on paths)
where Pid is the path from the user’s leaf to the root and
vi < vj if vi is more to the left in a graphical representation

281

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

of the tree (any total ordering on vertices suffices). We denote
this ordered partition by tainted-by(id). Note that the first
five conditions ensure that the partition contains only the nodes
to be refreshed and that its size is minimal, while the sixth
and seventh conditions guarantee that the partition is unique.
A common ordering of the paths is needed, since when we re-
fresh two paths that “intersect” (such that child(vi,mi

) ∈ Pj ,
as the blue and red paths in the image below for example), the
node secret in the “upper” path (the red path in this example)
needs to be encrypted under the new public key of the node in
the “lower” path (the new blue node) to achieve PCS. Thus,
in this case, the blue path will need to be refreshed before
the red one when processing the update. In general we will
refresh paths right to left, i.e. Pi will be refreshed after Pj if
i < j.

1) TTKEM Dynamics in detail: In this section we provide
a more detailed description of the group operations together
with pseudo-code for them.

The initiator of a group operation creates a message T which
contains all information needed by the other group members
to process it (though different members might only need to
retrieve a part of T for performing the update) and in case of
an Add also a welcome message W for the new member. The
message T contains the following fields:

• Tsender - ID of the sender
• Top - type of operation (remove/add/update)
• Tnew seeds - vector of ciphertexts which contains the en-

crypted seeds under the appropriate keys of all refreshed
nodes

• Tnew pks - vector of new public keys (derived from the
new seeds) for all refreshed nodes

• TH - hash-transcript

If the operation is a removal, the ID of the party removed will
also be included in Top. Similarly, in Add messages, Top will
contain the ID of the party added, together with the public
key used to add him. A welcome message W would also
contain the type of operation (welcome) and the sender ID,
but additionally include:

• Wseed - an encryption of the child node’s seed
• WT - the current tree structure, with public keys
• WM - current list of group members
• WH - current hash-transcript of the group

A new member should also be communicated the current
symmetric epoch key used to communicate text messages. As
this is not strictly part of the GCKA we ignore it for simplicity.

In order to refresh the node secrets we use the function
refresh(γ, ID, T), which takes a user’s state, a user in the group
and a message T . It generates new secrets for all the nodes
in that user’s path to the root as well as all nodes tainted
by them, update γ accordingly and store their encryptions in
Tnew seeds. We use the pointer me to refer to the identity of
the user sending the protocol message.

We use the function refresh-node that inputs a user local
state γ, a node v, a seed ∆ and message T . It updates the
information related to v in the state γ using ∆ to derive the
new public and secret key and store the public key in Tnew pks.

refresh (γ, ID, T)
P0 ← γ.path(ID)
{P1, . . . , Pn} ← γ.tainted-by(ID) #refresh all
paths from tainted nodes to root

for i = n, . . . , 0 do
vi,0, . . . , vi,m ← Pi
{∆i,0, . . .∆i,m} ←
expand(gen-seed(),m+ 1)

for p ∈ parents(vi,0) do
#encrypt first to parents of 1st node
if p 6= ⊥ then

Tnew seeds.insert(Encγ.get_pk(p)(∆i,0))
refresh-node(γ, vi,0,∆i,0, T)
for j = 1, . . . ,m do

Tnew seeds.insert(Encγ.get_pk(γ.partner(vi,j−1))(∆i,j))
refresh-node(γ, vi,j ,∆i,j , T)

refresh-node (γ, v,∆, T)
if v = vroot then

γ.set_sk(vroot,∆)
else

(sk, pk)← Gen(H2(∆))
γ.set_pk(v, pk);
γ.set_tainter(v,me)
Tnew pks.insert(pk)
if v ∈ γ.path(ID) then

γ.set_sk(v, sk)

(a)

(b)
Fig. 9: Sample Add operation: (a) illustrates the state of the tree before Alice
adds Frank (6th node) after which it turns into (b).

282

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

add (γ, ID, pk)
γ′ ← γ
γ′.add_party(ID, pk)
{v0, . . . , vd} ← γ′.path(ID)
sk ← γ′.get_sk(γ′.index(me))
r ← $; ∆← h(sk, r)
{∆0, . . . ,∆d} ← expand(∆, d+ 1)
refresh-node(γ′, v0,∆0, T)
for i = 1, . . . , d do

u← γ.partner(vi−1)
if u 6= ⊥ then

Tnew seeds.insert(Encγ.get_pk(u)∆i)
refresh-node(γ, vi,∆i, T)

Top ← (add, ID, pk)
Tsender ← me
TH ← γ.get_hash()
γ′.update_hash(T)
Wop ← welcome
Wsender ← me
Wseed ← Encpk(∆)
WT ← γ′.get_tree()
WH ← γ.get_hash()
WM ← γ.get_members()
return(γ′,W, T)

upd (γ)
Top = upd
Tsender = me
TH = γ.get_hash()
γ′ ← γ
refresh(γ′,me, T)
γ′.update_hash(T)
return(γ′, T)

Fig. 11: Alice removes Frank (dotted) and in the process has to update his
tainted nodes. Old state is again showed in gray.

H

Fig. 10: A sample Update operation: Alice added Eve to the group which
resulted in the tainted nodes (filled). Alice decided to later update herself.
The state of the tree before the Update is in a lighter shade.

rem (γ, ID)
req me 6= ID
Top = (rem, ID)
Tsender = me
TH = γ.get_hash()
γ′ ← γ
refresh(γ′, ID, T)
γ′.remove_party(ID)
γ′.update_hash(T)
return(γ′, T)

For our process algorithm we use the algorithms get enc,
update-path and proc-refresh as subroutines. The function
get enc inputs a user local state γ, a node v0, a set of paths Pi
and the set of encryptions received from the Update/Remove
message, and returns the encryption corresponding to v0.
Given path P, seed ∆, and update author ID, update-path
updates P using ∆ as seed. Finally, proc-refresh takes a user
(me) local state γ, the set of encryptions received from the
Update/Remove message Tnew seeds, the id ID of the user
that made the update/was removed, and the user sender that
made the operation (distinct from ID if the operation was a
Remove), and it updates all the secret keys in the path from
the me leaf to vroot.

update-path (γ, P,∆, ID)
for v ∈ P do

if v = vroot then
γ.set_sk(vroot,∆)

else
(sk,)← Gen(H2(∆))
∆← H1(∆)
γ.set_sk(v, sk)

proc-refresh (γ, Tnew seeds, ID, sender)
P0 ← γ.path(ID)
{P1, . . . , Pn} ← γ.tainted-by(ID) #refresh all
paths from tainted nodes to root

for i = n, . . . , 0 do
{v0, . . . , vn} ←
intersection(Pi, γ.path(me))
enc← get enc(γ, v0, P0, Tnew seeds)
(pl, pr)← γ.parents(v0)
if pl 6= ⊥ ∧ pl ∈ γ.path(me) then

sk ← γ.get_sk(pl)
else

sk ← γ.get_sk(pr)
update-path(γ, {v0, . . . , vn},Decsk(enc), sender)

283

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

process (γ, T)
req TH = γ.get_hash()
if Top = upd then

proc-refresh(γ, Tnew keys, Tsender, Tsender)
γ.update_pks_and_tainter(Tnew pks, Tsender, Tsender)

if Top = (rem, ID) then
if ID 6= me then

proc-refresh(γ, Tnew keys, ID, Tsender)
γ.update_pks_and_tainter(Tnew pks, ID, Tsender)
γ.remove_party(ID)

else
γ ← ε; γ′ ← ε
removed user cleans its states.

if Top = (add, ID, pk) ∧ ID 6= me then
γ.add_party(ID, pk)
proc-refresh(γ, Tnew keys, ID, Tsender)
γ.update_pks_and_tainter(Tnew pks, ID, Tsender)

if Top = welcome then
γ.init_state(TM, TT , TH)
update-path(γ, {γ.index(me), . . . , vroot},
Decsk(Tseed), Tsender)

if Top = confirm then
γ ← γ′; γ′ ← ε

if Top = reject then
γ′ ← ε

if Top /∈ {confirm, reject} then
γ.update_hash(T)

return(γ, key(γ))

284

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 06,2024 at 05:00:38 UTC from IEEE Xplore. Restrictions apply.

		2022-08-25T01:22:48-0400
	Preflight Ticket Signature

