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Abstract. Continuous group key agreement (CGKA) allows a group of
users to maintain a continuously updated shared key in an asynchronous
setting where parties only come online sporadically and their messages
are relayed by an untrusted server. CGKA captures the basic primitive
underlying group messaging schemes.

Current solutions including TreeKEM (“Messaging Layer Security”
(MLS) IETF RFC 9420) cannot handle concurrent requests while retain-
ing low communication complexity. The exception being CoCoA, which
is concurrent while having extremely low communication complexity (in
groups of size n and for m concurrent updates the communication per
user is log(n), i.e., independent of m). The main downside of CoCoA
is that in groups of size n, users might have to do up to log(n) update
requests to the server to ensure their (potentially corrupted) key mate-
rial has been refreshed.

In this work we present a “fast healing” concurrent CGKA protocol,
named DeCAF, where users will heal after at most log(t) requests, with
t being the number of corrupted users. While also suitable for the stan-
dard central-server setting, our protocol is particularly interesting for
realizing decentralized group messaging, where protocol messages (add,
remove, update) are being posted on some append-only data structure
rather than sent to a server. In this setting, concurrency is crucial once
the rate of requests exceeds, say, the rate at which new blocks are added
to a blockchain.

In the central-server setting, CoCoA (the only alternative with con-
currency, sub-linear communication and basic post-compromise security)
enjoys much lower download communication. However, in the decentral-
ized setting – where there is no server which can craft specific messages
for different users to reduce their download communication – our protocol
significantly outperforms CoCoA. DeCAF heals in fewer epochs (log(t)
vs. log(n)) while incurring a similar per epoch per user communication
cost.
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1 Introduction

1.1 (Group) Messaging

Popular group messaging applications, like Signal [29], work in an asynchronous
setting, where users need to be online only occasionally and their messages are
relayed by an untrusted server. The underlying ratcheting protocol provides
strong security; in particular, forward secrecy (FS), post-compromise security
(PCS), and end-to-end encryption, which is important as conversations can last
for years at a time. FS ensures that messages sent in the past remain secure if a
user gets compromised, while PCS allows for the keys of a user to be refreshed
after compromise ensuring future messages are secure again. It is a challenging
problem, and the focus of recent IETF standard on “Messaging Layer Security”
(MLS) [13], to efficiently scale messaging applications to larger groups without
giving up on the strong security properties provided by two-party protocols like
the Double Ratchet [29].

1.2 CGKA

Continuous group key agreement (CGKA) was identified as the key primitive
underlying group messaging [4,5]. Accordingly, it has recently seen a lot of atten-
tion with works giving CGKA instantiations [3,4,7,9,14,19,21,23,24,27,28],
analyzing the security of constructions [6,8,15,18,31], lower bounds [1,10,16,17],
or targeting additional properties like CGKA for multiple groups [1,22],
metadata-hiding [25], or tools for cryptographic administration of group mem-
bership [11]. See [30] for a SoK of security definitions for group key agreement.

CGKA allows a set of users to maintain a shared key in an asynchronous
setting where protocol messages are relayed by an untrusted server. The oper-
ations CGKA must support are the users’ addition and removal, and a key
update functionality by which a user can rotate its secret key material so as
to achieve forward secrecy and post-compromise security. Most of the so far
proposed CGKA schemes with this motivation, beginning with ART [19] and
TreeKEM [27], arrange users’ keys in a binary tree structure. In this so-called
ratchet tree, each node corresponds to a public/secret key pair. Leaves are iden-
tified with users who hold the secret keys of all nodes from their leaf to the root.
The root secret key—known to all users—is used to define the group key which
secures messages sent to the group. We think of the edges of the tree as being
directed from the leaves to the root, and an edge (pk, sk) → (pk′, sk′) basically
means that sk′ is encrypted under pk in a ciphertext that can be retrieved from
the delivery server. Thus, the user at a leaf with key-pair (pk, sk) will be able
to retrieve all the secret keys on the path from its leaf to the root. The reason
to use trees rather than, say, pairwise channels for maintaining the keys, is that
in groups of size n, each user only has to send log(n) ciphertexts in order to
update all secret keys they know (as opposed having to rekey n− 1 independent
channels). Concretely, as illustrated in Fig. 1 (tree on the top left, ignoring the
blue nodes for now), if a user A wants to update, they resample the keys on their
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path (the red path in the figure), encrypt the fresh keys to the nodes on their
co-path (the red edges), and send these ciphertexts to the server. Other group
members can fetch those ciphertexts and update their local states to reflect the
new keys. An important “invariant” property of these tree-based schemes is that
a user will always only learn the secret-key for nodes on their path to the root
(which is why it is sufficient to replace just the keys on the user’s path to root
to achieve FS and PCS for that user).

Concurrent Updates. While updates in the initial versions of TreeKEM only
need log(n) communication, they are inherently sequential: a user can only send
an update request after processing the previous one. If two (or more) users A
and B send an update request each rekeying their full paths to the server for
the same previous ratchet tree state (as shown on the left in Fig. 1), the server
will simply reject all but one of the requests. In fact, this is true for all CGKA
variants with two exceptions discussed below.

Recent versions of TreeKEM do allow for a different type of concurrent
updates through the “Propose and Commit” framework. Here, initial users con-
currently announce their update operations in a first round, generating new key
material only for their own leaf. Then, in a second round, one party “commits”
the updates, along the way refreshing their own full path. But to ensure PCS,
all nodes not on the paths of the initial users have their old keys replaced (or
removed). TreeKEM and similar protocols address this by setting those nodes
to be blank. That is, these node are effectively removed from the tree. Instead,
each blank node’s parent node now has edges to the blanked nodes children (if
the child is blanked, then to its grandchild, etc.). Figure 1 (right side) shows the
tree we get if A commits to an update proposal by B in this way. Note that
the more concurrent updates, the more blanking ruins the tree structure, and
as a consequence future operations become more expensive e.g., to commit A
must send 4 ciphertexts before blanking B, but 6 after. In general the cost can
grow from log(n) to n. If the group members want communication efficiency,
they will have to commit to as few updates as possible at a time, relying instead
on sequential commits to refresh keys. That means concurrency is not possible
anymore, as commits need to be totally ordered, and the issue outlined above
returns.

Causal TreeKEM. The first CGKA protocol supporting concurrent updates was
Causal TreeKEM [28]. This protocol builds on a public key encryption primitive
allowing for keys to be combined in a commutative way. This way, updates will
no longer overwrite the previous key, but instead update it by combining the
fresh key with the existing one. Since this combining process is commutative,
several updates can be merged at the same time, without regard for the order
in which users received them.

CoCoA. The CGKA scheme CoCoA [3] processes concurrent update proposals
in a “greedy” manner and simply accepts as many keys in a concurrent pro-
posal as possible. As illustrated in Fig. 1, fresh keys from concurrent updates



DeCAF: Decentralizable CGKA with Fast Healing 297

Fig. 1. (left): Illustration of how TreeKEM, CoCoA, and DeCAF handle a concurrent
update by parties A and B who want to replace their (potentially compromised) keys.
TreeKEM I refers to the conservative approach where users commit one at a time. In
DeCAF instead of replacing old keys, the new key-material is merged with the existing
one. (right): An illustration of blanking used to commit an update proposal (removing
B would be similar, with their leaf node blanked instead.) (Color figure online)

are accepted, and if there is a conflict as two updates want to replace the same
node, one of the two updates is rejected from this point upwards. While this
process does not guarantee that the key is safe after every compromised party
updated,1 somewhat surprisingly [3] proves that the tree does heal after every
party updated log(n) times in the worst case.

Moreover, CoCoA enjoys very low communication complexity, as each party
must only download at most log(n) ciphertexts to process each set of concurrent
updates. Note that, this is independent of both the number m of parties that
update in this epoch, which can be as large as m = n, as well as the number t of
corruptions, which can be as small as t = 1. For this to be theoretically possible,
the untrusted server must be more sophisticated than just relaying every protocol
message it gets to all users in the group. Instead, it only sends a subset of the
ciphertexts to each user based on their position in the tree and some commitment
to its actions, allowing users to check if they received consistent messages.

Server- and Blockchain-Aided CGKA. In order to distribute protocol messages
among the members of the group, CGKA protocols typically rely on an untrusted
server. Most CGKA protocols like TreeKEM [13], rTreeKEM [4], and Tainted
TreeKEM [27] require a simple relay server. CoCoA, however, is a server-aided
CGKA protocol, a primitive formally defined in [7], and where the server is
expected to do non-trivial computation and provide users with personalized
packages. To achieve end-to-end security the server is untrusted. Despite this,
reliance on the server can still be problematic. For example, it allows it to reject
1 In the example from Fig. 1, if B was compromised, after the update, the two topmost

red nodes would still be compromised, as their keys were encrypted to compromised
keys.
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protocol messages by a particular user, thus preventing them from healing. Or
to selectively forward messages to only part of the users, leading to a group split.

Note that these issues could be amended by replacing the server with a decen-
tralized solution, an example of which would be a blockchain. Throughout the
paper we will use the term blockchain for convenience to refer to any append-
only data structure with the property that when the data is distributed among
multiple nodes there is a consensus mechanism that guarantees that the data
is arranged into blocks with a total ordering on these that all nodes agree on.
New data can be added by making use of a peer-to-peer network or any other
suitable type of channels. The use of such an append-only structure (permis-
sioned or permissionless) allows us to realize group messaging which enjoys the
same robustness and security guarantees as the underlying structure. More con-
cretely, instead of sending their CGKA protocol messages (update/add/remove)
to the server, the users would post them on the append-only ledger. Only the
key-management must be on-chain, text messages (encrypted under the current
group key) can be gossiped or shared on a public bulletin board.

Note that any CGKA in the classical setting can be “compiled” to the
blockchain setting: in the latter, the block producer simply emulates the server
to compile the protocol messages that would be broadcast in the classical set-
ting, and adds this message to the block. In the case of server-aided CGKA
the users, after downloading all protocol messages stored on chain, can simply
locally emulate the computation that would be done by the smart server. Note
that this potentially increases the download communication-complexity, as the
users no longer receive personalized packages. The opposite holds as well, any
server being able to emulate the outputs of the decentralized consensus protocol.

There are at least three separate properties which are achieved in the decen-
tralized setting, but not in the “classical” server setting. Namely (1) security
against splitting attacks, (2) censorship resistance, and (3) robustness. Regard-
ing (1), an attack which is unavoidable in the classical setting is a splitting
attack, where the (corrupted) server splits the users into two or more groups,
and then only relays messages within those groups, forcing parties in different
groups into different and inconsistent states. With such an attack one can, for
example, enforce that only a particular subset of users sees some set of messages.
If the protocol messages are on a blockchain, all parties will agree on the same
view, and thus this attack is prevented. With regards to (2), another attack that
is unavoidable in the single server setting is the censoring of a particular party.
An untrusted server can ignore messages from a party, this way e.g. preventing
them from ever updating. This is severe as, should this party be corrupted, the
corrupted key can be indefinitely prevented from healing. In the blockchain set-
ting, the “liveness property” of the blockchain, in combination with the fact that
our protocol allows for concurrent updates (so there are no DOS-type attacks
where some parties prevent another one from updating by flooding the mempool)
prevents this attack: if a user wants to update, their request will be added with
high probability within a few blocks. Finally, and regarding (3), in the single
server setting the group can be shut down by taking out a single server. Better
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Fig. 2. Comparison of the number of epochs required to recover in CoCoA (a) and
DeCAF (b) for n users, of which t are corrupted. Red nodes correspond to compromised
keys. In each epoch all parties update concurrently, in CoCoA update requests are
prioritized from left to right. CoCoA requires �log(n)� + 1 = 4 epochs to recover,
DeCAF only �log(t)� + 1 = 2. (Color figure online)

resilience can be achieved with several servers, but then one needs to solve the
state machine replication problem. This is what our protocol does if using a
permissioned blockchain. With a permissionless blockchain, resilience would be
even stronger.

Let us mention that in order to avoid all three issues mentioned above we
need to record all the protocol messages on chain, which is probably no prob-
lem in the permissioned setting, but could be expensive in a permissionless
blockchain. Permissionless blockchains like Bitcoin or Ethereum have slow block
arrival rates (and even slower confirmation times), there also is a non-trivial cost
to record transactions on chain. A permissioned blockchain, on the other hand,
just requires a fixed small number of servers and provides the required security
as long as a majority of the servers behave honestly (e.g., 3 out of 5). The cost of
running such a protocol is only a small constant factor larger than just having a
single server, but greatly reduces the trust required. If we are only interested in
(1) and (2), but not (3), one can just post a single hash of all the messages which
each block contains on chain, while the actual messages are stored off chain. This
loses property (3) unless we solve the data availability problem separately2.

1.3 Our Contribution

DeCAF. In this work we consider a new CGKA protocol, DeCAF (for DEcentral-
izable Continuous group key Agreement with Fast healing), that allows for con-
current updates. In DeCAF we use a key-updatable PKE scheme, and updates
no longer replace keys, but update them. We show that the protocol provides
forward security in the same vein as most other CGKAs (albeit slightly weaker
than TreeKEM due to a potential delay until update messages are received and
processed by other users), and only needs log(t) epochs to heal, with t being
the number of corrupted parties. The latter point contrasts to CoCoA, where it
is only guaranteed that the tree healed once each compromised party updated
2 https://blog.polygon.technology/the-data-availability-problem-6b74b619ffcc/.

https://blog.polygon.technology/the-data-availability-problem-6b74b619ffcc/
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log(n) times. This difference is illustrated in Fig. 2. The root of this difference
is the fact that, while in CoCoA we must drop one of two concurrent updates
for the same node, in DeCAF we can perform them both, which turns out to
have a significant impact on security. As we can expect t to be small compared
to n (in fact, for most of the lifetime one should hope that t = 0), DeCAF will
provide comparable security to CoCoA with fewer updates. On the downside, as
in DeCAF every user must process all updates by other users (while in CoCoA
at most log(n) other updates matter), the download communication (from server
to users) will be larger.

The above discussion suggests a trade-off between DeCAF and CoCoA, and
which one is better will depend on the context. If run using a server, CoCoA
and DeCAF are incomparable; DeCAF heals faster (log(t) vs log(n) epochs) and
therefore has lower sender communication, but CoCoA has lower recipient com-
munication (since the server crafts individual messages for each party). However,
in the decentralized setting (where we do not want to rely on a(n intelligent)
server to relay messages), CoCoA loses its advantage in recipient communication
and DeCAF is strictly better in all aspects. This is discussed in greater detail
below, where we give a comparison of DeCAF to CoCoA and other concurrent
CGKA protocols.

Our protocol is also similar to Causal TreeKEM [28] in some aspects, but
differs largely in others. In particular, the main element in common is the above-
mentioned use of updatable PKE, which is exclusive to these two protocols.
While the primitive is also part of other constructions, such as rTreeKEM [4], it
is employed in a very different way, as the focus is another (improved FS, in that
case). However, while Causal TreeKEM requires the key-update functionality to
be commutative, we do not. Furthermore, mechanisms for adding and removing
parties are different, with those used by DeCAF being both simpler and in
line with what is currently used by MLS, making a potential adoption by the
standard much easier. Another big difference is the security guarantees provided
by both protocols. Indeed, Causal TreeKEM does not consider FS and PCS
is only claimed after each corrupted user issues an update in a separate epoch,
thus needing n epochs to heal (in the model where corrupted users are not aware
of their corruption). The latter claim lacks a formal security proof. We believe
that, for static groups, Causal TreeKEM might enjoy a similar PCS guarantee
to DeCAF, but this is unclear for dynamic groups.

Maintaining a Group on Chain. Given the particular suitability of DeCAF in a
decentralized network, we cast it as making use of a blockchain, access to which
is shared by all group members. The use of blockchain for CGKA protocols is
novel as far as we know, but note that there exist previous messaging protocols
making use of it, like Elixxir [20]. We stress that this is not a requirement for the
protocol to run, which could instead simply rely on a central server, as discussed
above. Now we explain how to make use of such a structure to maintain a group.
In its simplest instantiation, a group would be initialized once some ith block
Bi in the blockchain contains the welcome messages which defines a ratchet tree
Ti for some group. Users in the group can post add/remove/update messages on
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Table 1. Overview of the cost incurred to heal t corruptions in a group of size n (it
is not known which t of the n users are corrupted). Column ‘Conc.’ indicates, whether
the protocol allows for concurrent updates, column ‘Epochs’ the number of epochs
required to recover from corruption, column ‘Sender comm.’ the cumulative uploaded
communication, column ‘Recipient comm.’ the per-user download communication cost,
and column ‘Cost after rec.’ the sender communication incurred by an update of a
single user after the recovery process has concluded. TreeKEM I corresponds to the
conservative approach of only healing by sending commits, TreeKEM II to using update
proposals to heal at the expense of extra blanking. ∗: [17] only achieves weak PCS,
obtaining PCS guarantees similar to the rest would need O(n) cost after healing, due
to extensive tainting.

Protocol Conc. Epochs Sender comm. Recipient comm. Cost after rec.

TreeKEM I [14] No n O(n log(n)) O(n log(n)) O(log(n))

TreeKEM II [14] Yes 2 O(n) O(n) O(n)

Causal TreeKEM [28] Yes n O(n log(n)) O(n log(n)) O(log(n))

Bienstock et al. [17] Yes 2 O(n2) O(n2) O(log(n))∗

Weidner et al. [32] Yes 2 O(n2) O(n) O(n)

CoCoA [3] Yes log(n) O(n log2(n)) O(log2(n)) O(log(n))

DeCAF (this work) Yes log(t) O(n log(n) log(t)) O(n log(n) log(t)) O(log(n))

the blockchain, and the ratchet tree Tj is defined to be the ratchet tree Tj−1 after
processing the protocol messages contained in block Bj . One issue with this basic
protocol is the fact that a message created referring to Ti can only be created
after learning block Bi and must be added to the next block Bi+1. Depending
on the block-arrival time of the chain, we might want to give messages more
time to get included in the blockchain. We use a simple way to achieve this by
introducing a parameter k, and only update the ratchet tree every k blocks, so
messages referring to this tree can be included in any of the k blocks following
the block specifying the tree. The parameter k should not be chosen larger than
necessary, as only one update per k-block epoch will contribute towards healing
(except if a corruption occurs in between two updates from the same epoch). If
a message is not included in time this just means it can no longer be included,
so the user can simply create a new message referring to the new ratchet tree.

To achieve FS, users should delete secret keys of outdated ratchet trees as
soon as possible. For blockchains with immediate finality (i.e., no forks) this
means old keys can be deleted immediately once a new ratchet tree is computed,
while in longest-chain protocols one should wait to delete keys until the corre-
sponding blocks are considered confirmed. Otherwise they might lose access to
the group should a fork occur.

Efficiency. We now discuss the efficiency of DeCAF in healing a group with t
compromises, and how it compares to related protocols. Throughout we refer to
Table 1. There, we distinguish between two modes of TreeKEM (Propose and
Commit). TreeKEM I corresponds to the conservative approach of only heal-
ing by sending commits (which would be expected behaviour, as argued below),
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hence is not concurrent. TreeKEM II, in turn corresponds to using update pro-
posals to heal at the expense of extra blanking. Note that an execution where,
as a rule, users achieve PCS by sending update proposals instead of commit
is not compatible with retaining logarithmic communication in the long term,
due to the large amount of blanks, as illustrated on the last column of Table 1.
Thus, the data shown for the communication complexity of the latter mode of
TreeKEM during healing is only short term. In order to have the fairest com-
parison, we consider the complexity of DeCAF in the decentralized setting and
that of CoCoA in the centralized one, in which it was proposed.

We consider the process by which the group heals from t compromises. We
first stress that since a party does not know if they are corrupted, they can-
not decide whether to update based on this. The main novelty of our protocol
is that the number of epochs that it takes to heal depends on the number of
corrupted parties, but not on relative update behaviour of users. Indeed, while
several previous protocols could heal faster than what is shown on the table in
an optimal execution, this execution needs for the users and/or the server to
coordinate and/or make “optimal” choices obliviously (since, again, there is no
reason the identities of corrupted parties are known); for instance, give prefer-
ence to the corrupted parties in the case of concurrency, or coordinate to not
concurrently commit or update. In the table we consider thus all users updating.
This is the case for TreeKEM I and Causal TreeKEM, who could heal optimally
in t epochs, and thus reduce the communication complexity accordingly; but also
for TreeKEM II, [17] and [32], for which the number of epochs is not affected,
but whose communication complexity could be reduced in an optimal execution.

One can see that, among the protocols that provide sub-linear communication
costs for sending updates over the long term, our protocol manages to heal in
the least amount of epochs. On the recipient side, our protocol performs within a
logarithmic factor of all others, except for CoCoA, which naturally outperforms
all other in this regard, due to users only storing a partial view of the tree.
We stress that, if run in the decentralized setting, CoCoA loses its advantage
in terms of recipient communication, leading to a cost of O(n log(n)2). Thus, in
this setting it is outperformed by DeCAF in every aspect.

2 Preliminaries

In this section we provide syntax for secretly key-updatable PKE, define the
notion of a blockchain-aided continuous group-key agreement and the concept
of ratchet trees.

2.1 Secretly Key-Updatable Public-Key Encryption

We now recall the definition of secretly key-updatable public-key encryption
(skuPKE) schemes [26]. A skuPKE scheme is essentially a public-key encryption
scheme, that additionally allows the sampling of pairs (Δ, δ) of public and secret
update information, which can be used to update secret and public keys, in a
consistent way.



DeCAF: Decentralizable CGKA with Fast Healing 303

Definition 1. A secretly key-updatable public-key encryption scheme skuPKE
consists of the tuple of algorithms (skuPKE.Gen, skuPKE.Enc, skuPKE.Dec,
skuPKE.Sam, skuPKE.UpdP, skuPKE.UpdS).
Key-generation algorithm skuPKE.Gen on input of the security parameter 1λ

returns a key pair (pk, sk). Encryption algorithm skuPKE.Enc on input of pub-
lic key pk and message m returns a ciphertext c. The deterministic decryption
algorithm skuPKE.Dec receives as input a secret key sk and a ciphertext c and
returns either a message m or the symbol ⊥ indicating a decryption failure.
Sampling algorithm skuPKE.Sam(1λ) is used to sample pairs (Δ, δ) consisting of
public and secret update information. The key-update algorithms skuPKE.UpdP
and skuPKE.UpdS get as input (pk,Δ) and (sk, δ), respectively, and output a
rerandomized key pk′ or sk′.

Correctness requires that updating the public and secret key of a key-pair with
the same sequence of rerandomization factors preserves compatibility of the
updated keys with each other. For security we essentially require that, on one
hand, messages encrypted to a secret key that was generated by updating a
potentially compromised secret key are secure as long as the secret update infor-
mation to do so was not leaked, and, on the other hand, that leaking an updated
key does not compromise ciphertexts encrypted to its predecessor as long as the
secret update information was not leaked. We defer the formal definition of cor-
rectness and security, as well as, an instantiation based on the ElGamal scheme
to the full version [2] of this paper.

2.2 Blockchain-Aided Continuous Group-Key Agreement

We now introduce the syntax of blockchain-aided continuous group-key agree-
ment (baCGKA), which allows the set up of a group G = (id1, . . . .idn) of users
sharing an evolving group key. We assume all users id have an initialization key
packet ((pkid , skid), (svkid , sskid)), known to all other users. Here, (pkid , skid)
will be used to encrypt group invitation messages to id and (svkid , sskid) to
authenticate messages from id . In practice, this would be implemented by a PKI
that allows users to deposit their and recover other users’ key packets.

A baCGKA scheme baCGKA specifies algorithms baCGKA.Init, baCGKA.Upd,
baCGKA.Add, baCGKA.Rem, baCGKA.Proc, baCGKA.Key, baCGKA.Send, and
baCGKA.Fetch. The first 6 algorithms are local, in the sense that they only affect
the executing user’s state, and generate protocol messages to be sent to the rest
of the group. The last two algorithms, on the other hand, interact with the
distributed protocol by sending transactions and fetching blocks, respectively.

We consider a setting in which an append-only data structure is used to store
the protocol messages and the data is distributed among several nodes. Users
send their protocol messages to these nodes and then these nodes run a consensus
algorithm that guarantees that they agree on their view of the data and on a
total ordering of the blocks formed by the protocol messages. A blockchain is an
example of this and that is why we use the term “blockchain-aided” CGKA.
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Initialization. User id1 runs (id1.st ,W ) ← baCGKA.Init(G, (pkid1 , . . . , pkidn),
sskid1) to initialize a session . Here G = (id1, . . . , idn) specifies the group, pkidi

is the initialization encryption public-key of user id i, and sskid1 the initialization
authentication secret key of the party setting up the group. The output consists
of user id1’s initial state and a welcome message W .

Updates. To update their state, id runs (id .st , U) ← baCGKA.Upd(id .st),
updating their state and generating an update message.

Adding a Group Member. To add user id ′ to the group member id can run
(id .st , A) ← baCGKA.Add(id .st , id ′, pkid ′). Here pkid′ is the initialization public
key of id ′ and A an add message.

Removing a Group Member. User id can remove a (not necessarily different)
user id ′ from the group by running (id .st , R) ← baCGKA.Rem(id .st , id ′). The
output consists of an updated state and a removal message R.

Processing a Block. To process a block B consisting of update, welcome,
add, and remove messages, and move to an updated state, user id runs id .st ←
baCGKA.Proc(id .st , B).

Retrieving the Group Key. At any point a party id in the group can
extract the current group key K from its local state st by running K ←
baCGKA.Key(id .st).

Sending a Transaction. To send a protocol message M generated by one of
the previous algorithms, user id runs baCGKA.Send(id .st ,M).

Fetch New Blocks. Algorithm (B1, . . . , B�) ← baCGKA.Fetch(id .st) returns
all blocks added to the chain since the user last fetched them.

2.3 Ratchet Trees

Similarly to other efficient CGKA protocols, our protocol relies on a ratchet tree.
This is a directed binary tree T = (V,E), edges pointing towards the root vroot.
Intuitively, the root corresponds to the group secret and every user id has an
associated leaf vid . For node v we denote its child by v.child , its parents by
v.par , and its left and right parent by v.lpar and v.rpar . If v is a leaf we denote
its path to the root by v.path and by v.copath its copath, i.e. the set of parents
of w ∈ v.path that are not themselves in v.path.

Further, v has an associated state v.st consisting of a skuPKE key pair (v.pk,
v.sk), sets v.unm0 and v.unm1, and, if v = vid is a leaf, user id ’s signature key
pair (svkid , sskid). v.unm0 and v.unm1 are sets of unmerged leaves, capturing
the leaves below v, whose users do not know the secret key v.sk. More precisely,
v.unm0 corresponds to unmerged users such that there has not yet been an epoch
with an update affecting v since they joined the group, v.unm1 to unmerged
users, for whom a single such epoch exists. We denote by v.stpub the public part
of the state, i.e. (v.pk, v.unm0, v.unm1) and, if v = vid is a leaf, the signature
verification key svkid . The secret part v.stsec of v’s state consists of v.sk and, if



DeCAF: Decentralizable CGKA with Fast Healing 305

v = vid is a leaf, the signature signing key sskid . Similarly, we denote by T.stpub
the public part of the ratchet tree, i.e., (V,E) together with v.stpub for all v ∈ V .
A node’s state can also be blank, meaning its state is empty. For the purpose of
later populating this node with a new state, a blank node is considered to have
a dummy key-pair (pkc, skc), sampled when the group is created, and whose
secret key is public knowledge. Updates unblanking a node will then update this
dummy key-pair. Finally, we define the resolution v.res of v as v.res = {v} if v
not blank, v.res = ∅ if v is a blank leaf, and v.res =

⋃
v′∈v.par v′.res else.

3 Protocol Description

We now describe DeCAF in detail. Section 3.1 describes how the protocol pro-
ceeds in epochs determined by the blockchain’s blocks, Sect. 3.2 how the structure
of the ratchet tree is modified when handling changes to the group membership,
and Sect. 3.3 how update information for a path in the ratchet tree is sam-
pled and applied. Finally, in Sect. 3.4 we give the description of the protocol’s
algorithms. For a more formal description of DeCAF in pseudocode see the full
version [2] of this paper.

3.1 Blocks and Epochs

DeCAF proceeds in epochs consisting of k blocks. More precisely the ith epoch
corresponds to blocks i·k+1, . . . , i·k+k of the blockchain. Updates are generated
with respect to the ratchet tree of the first block of the current epoch. This is
to handle potential delays of up to k blocks from the moment a user sends a
message containing group operations information to the moment it makes it
into the blockchain. At the beginning of a new epoch, the group switches to a
new ratchet tree that incorporates all updates of the last epochs, as well as the
dynamic changes made to the group. One consequence of having to accommodate
for such delays is that users need to store at least the keys at the beginning of
an epoch for the entire duration of it, and if the underlying blockchain does not
have immediate finality potentially keys from further back. This translates into
weaker FS guarantees than in the server setting as a user cannot immediately
delete keys after updating to the next state. But this difference will be marginal
as the length of an epoch (or confirmation time of the blockchain, whichever is
larger) will still be tiny compared to the duration for which users are typically
offline. A second consequence is that these delays introduce a further delay in
the execution of dynamic operations. Indeed, updating information generated
during an epoch is computed without taking into account users that were being
removed or added during that epoch. Thus, in the case of epochs with adds, the
key at the end of that epoch will not be known to the new parties, who will
need to wait one more epoch to learn it. In the case of epochs with removes,
the key at the end of that epoch will be blank, so a new key will be necessary
to establish a new group key that the removed users do not have knowledge of.
We remark that this seems to be somewhat inherent. In fact, if we set k = 1,
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the situation is not that different than that in other protocols like CoCoA or
TreeKEM, where a first round of dynamic operations needs to be followed by
a subsequent one where the commit effecting the operations takes place. In
summary, using a blockchain for decentralization gives improved consistency
and security guarantees, but the delay between protocol epochs is now dictated
by the block arrival and typical inclusion times of the underlying blockchain.
Therefore, FS is (marginally) affected by the confirmation time of blocks.

User id ’s state id .st contains the user’s identifier id , two ratchet trees T =
(V,E) and Tnext = (Vnext, Enext), lists Onext, and Upending, epoch counter ectr, a
key pair (pkc, skc), the (potentially empty) group key K, and a working copy of
the group key Knext for the next epoch.

T contains the state of the ratchet tree at the beginning of the current epoch.
More precisely, this encompasses the public states v.stpub of all nodes v ∈ V and,
if we denote id ’s leaf in T by vid , additionally the secret node states v.stsec for all
nodes v in id ’s update path vid .path. Ratchet tree Tnext serves as a working copy
for the next epoch, i.e., it contains keys updated according to the blocks already
processed in the current epoch—excluding dynamic operations. Note that the
two trees differ only in the node states, but not the general tree structure. To
clarify whether we consider nodes in T or Tnext, we will denote nodes in the
latter by vn. Onext is a list of the dynamic operations included in the blocks of
the current epoch that were already processed. These changes will be applied to
Tnext at the end of the epoch. List Upending stores pending update information.
The epoch counter ectr is used to generate and confirm protocol messages for the
current epoch. Finally (pkc, skc) is the dummy key-pair used for blank nodes.

3.2 Implementing Dynamic Operations

As a result of dynamic operations, the tree structure will change. Here, we
describe this change, ahead of the protocol description.

To add parties we use the unmerged leaves technique, introduced in TreeKEM
v9 [12]. Note that a new user might not be able to receive the keys for all nodes
in their path to the root the moment they are added, since all other parties
under any of these nodes might be offline at the time. Thus, new parties are
joined directly to the root, and sent the keys in their path in subsequent epochs.
More in detail, whenever id , whose path shares a node with that of a new
party id ′, generates an update in a follow-up epoch, they need to encrypt the
current key for that node, together with the seed used to sample the update
information to id ′. However, this key might already have been present in an
epoch which preceded that in which id ′ was added. Hence, sending it to id could
cause problems with forward secrecy—id must ensure that the key sent to id ′

was updated after they joined the group. Thus, this process is done in two steps.
First, upon being added to the group, id ′ is included into the set v.unm0 for all v
in their path, except for the root. Updates that apply to v, issued while id ′ is in
this set v.unm0, do not encrypt any secret information about v to id . Whenever
an epoch first contains such an update for v, however, id ′ is removed from the
set v.unm0 and added to v.unm1, at the end of the epoch. This signals that
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the key at v is now safe to be communicated to id ′. Any following update that
applies to v once id ′ ∈ v.unm1, will then encrypt the current key plus the update
information to id ′. Once such an update occurs, id ′ learns the key at v, and is
then removed from v.unm1. The one exception to this is the root node vroot,
where id ′ is directly added to vroot.unm1. The reason is that all add operations
are coupled with an update from the issuing party, thus ensuring that the root
key at the end of that epoch is updated, and thus safe to communicate to id ′.

Removes are handled via blanking, where the keys that removed users had
knowledge of get set to the dummy key-pair (pkc, skc) and get ignored by users
encrypting new secret update information δi until they get updated again.

All these changes are executed once at the end of each epoch. While all group
operations in the following epoch will take the new tree into account, added and
removed users will not be properly added and removed until the end of that
following epoch, though. This seems inherent if we want to allow concurrency:
the author of an operation concurrent with a dynamic one will be oblivious to
the latter, thus unable to prepare their operation taking it into account.

More in detail, at the end of an epoch where adds A = (A1, . . . , A�a),
removes R = (R1, . . . , R�r ), and modifications M = (M1, . . . ,M�m) to the sets
of unmerged users took place, users will call algorithm upd-tree(Tnext, A,R,M),
which will output the tree resulting from applying these operations. First, the
algorithm in order processes the Mi, which are lists of nodes that were affected by
updates in the current epoch (their exact definition is given in Sect. 3.3 below).
For every v ∈ M the sets of unmerged leaves are updated to v.unm1 ← v.unm0

and v.unm0 ← ∅. Then, the algorithm will set the state of all in the paths of
any of the removed users to blank, and associate with them the dummy key-
pair (pkc, skc). Added parties will get assigned a leaf in the tree in a canonical
way, determined by the ordering of operations in the corresponding block. The
first leaves to be assigned will be blank ones, and new leaves to the right of the
existing ones will be added, if there are not enough blanked ones, adding any
internal nodes necessary to maintain the binary structure of the tree. If a new
root node must be added to accommodate for the new parties, this will be given
the dummy key-pair until updated at the end of the next epoch. Then, for each
newly-added party id i with init key pkid , it sets the state of their new leaf vid to
(pkid , svkid), and for any v ∈ li.path except the root vroot, it adds id i to v.unm0.
The root idi is added to vroot.unm1. Finally, it outputs the resulting tree.

Both blanks and unmerged leaves sets can disappear over the protocol exe-
cution, bringing the tree back to its optimal binary structure. Whenever an
Update including new update information for a node v takes place, v will become
unblanked if it was not so already. Moreover, unmerged leaves in unm1 will
become merged, and those in unm0 will then pass to unm1.

3.3 Updating the States of an Update Path

During group creation and updating, users will update the keys along some path.
Before describing our protocol’s algorithms, we detail this operation.
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Consider user id with associated leaf vid . Update information for the keys of
vid .path is sampled using ((Δi, δi, Ci)i, κ) ← gen-path-upd(id .st). The algorithm,
on input of the user’s state, first fetches (v1 = vid , . . . , vr = vroot) = vid .path
with respect to ratchet tree T corresponding to the beginning of the epoch.
Let m be maximal such that id ∈ vm−1.unm0 ∪ vm−1.unm1. If no such m
exists, we set m = 2. The algorithm samples a seed s1 uniformly at random
and computes sm = H1(s1) as well as si = H1(si−1) for i = m + 1, . . . , r. For
i ∈ {1,m, . . . , r} it samples update information (Δi, δi) ← skuPKE.Sam(H2(si))
using randomness H2(si). It then for i ∈ {m, . . . , r} computes vectors of cipher-
texts Ci = (ci,j)zj

with ci,j ← skuPKE.Enc(zj .pk, si), where the nodes zj

are chosen as zj ∈ vi−1.res ∪ vi.unm1\vi−1.unm1 for i = m + 1, . . . , r and
zj ∈ (vi.lpar).res ∪ (vi.rpar).res ∪ vi.unm1\{id} for i = m. Finally, κ = H1(sr)
will be used to update the group key. The algorithm’s output is ((Δi, δi, Ci)i, κ).
Looking ahead, (Δi, Ci)i will be sent out as the update message and ((Δi, δi)i, κ)
saved in the user’s pending state.

When user id ′ wants to apply a path update (Δi, Ci)i with i ∈
{1,m, . . . , r} generated by user id , they call algorithm id ′.st ←
proc-path-upd(id ′.st , (Δi, Ci)i). It first fetches user id ’s update path (vn

1 =
vn
id , . . . , vnr = vn

root) = vn
id .path from the working copy Tnext of the ratchet

tree. Then, for all i it updates the public keys along the path, i.e., vn
i .pk ←

skuPKE.UpdP(vn
i .pk,Δi). Here, if vn

i was blank the public key of a constant
dummy key-pair (pkc, skc) is used as vn

i .pk. Note that this implies that vn
i ’s

resolution is now {vn
i }.

Let vi denote the first node that is shared between vid .path and vid′ .path
and for which id ′ /∈ vi.unm0. Then, if the update was generated during the
current epoch, Ci contains an encryption ci,j of seed si under the public key
of some node wi,j for which the secret key is contained in id ’s copy of tree T
that is part of vid′ .st . The algorithm recovers si ← skuPKE.Dec(wi,j .sk, ci,j)
and for j ∈ {i + 1, . . . , r} computes sj = H1(sj−1) and update information
(Δj , δj) ← skuPKE.Gen(H2(sj)). It then updates the corresponding secret keys
in Tnext as vn

j .sk ← skuPKE.UpdS(vn
j .sk, δj), where, analogous to the above, if

vj is blank, skc takes the role of vj .sk. Finally, the algorithm computes group
key update information κ = H1(sr), incorporates it in the working copy of the
group key Knext ← Knext ⊕ κ, and adds the list M = (vm, . . . , vr) to Onext. The
latter will be used to update the sets of unmerged users at the end of the epoch.

3.4 Protocol Algorithms

To initialize a group for users (id1, . . . , idn), user id1 first generates the
dummy key-pair (pkc, skc) ← skuPKE.Gen(1λ). They then set up a left-balanced
binary ratchet tree T = (V,E). Every node in T is blank, except for the leaves.
The public state of the ith leaf contains the corresponding user’s initialization
public key and their signature verification key. Further, the secrets state of
id1, vid1 .stsec, contains id1’s secret decryption and signing keys. Group cre-
ator id1 incorporates (pkc, skc), T , a copy Tnext of T , and an empty list Onext

in their state and computes ((Δi, δi, Ci)i, κ) ← gen-path-upd(id1.st). The tuple
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((Δi, δi)i, κ) is added to id1’s state together with epoch counter ectr = (0, 0)
(where the first coordinate denotes the epoch and the second one the block
inside the epoch) and Knext ← 0. The algorithm outputs the resulting state
and welcome message W = (T.stpub, (Δi, Ci)i, (pkc, skc), σ, id1), where σ is a
signature of (T.stpub, (Δi, Ci)i, (pkc, skc)) under sskid1 .

To issue an update, id computes ((Δi, δi, Ci)i, κ) ← gen-path-upd(id .st).
The secret update information (δi)i and κ are stored in id ’s pending
state Upending. Let (v1, . . . , vr) = vid .path be id ’s update path. Update mes-
sages also communicate the current secret key of nodes to unmerged users that
have already processed an update on this node. More precisely, the updating
user for all i ∈ [2, . . . , r] such that id /∈ vi.unm0 ∪ vi.unm1 computes a vector
of ciphertexts C̃i = (c̃i,j)zj

, where c̃i,j = skuPKE.Enc(zj .pk, vi.sk) and zj are
the nodes satisfying zj ∈ vi.unm1. For users who just joined the group, and are
thus unmerged at the root, this ciphertext contains the key Knext. The algo-
rithm outputs message U = ((Δi, Ci)i, (C̃)i, ectr, σ, id), where σ is a signature of
((Δi, Ci)i, (C̃)i, ectr) under sskid .

To add a user, when called by id , the addition algorithm out-
puts Ã = (A, T.stpub, (pkc, skc), U, ectr, σ, id), containing an add request A =
“add.user(id ′)”, where id ′ is the new user. Further, it contains a copy of the
public ratchet tree state, the dummy key pair, an update message U generated
as described in the previous paragraph, the epoch counter, a signature σ of the
message (A, T.stpub, (pkc, skc), U, ectr) under sskid , and the identity id .

To remove a user, when called by user id , the removal algorithm outputs
R̃ = (R, ectr, σ, id), with R = “remove.user(id ′)” for id ′ the removed user, and
where σ is a signature of (R, ectr) under sskid .

To process a block, user id processes a block B = (W,U, Ã, R̃) consisting
of (a potential) welcome message W , update messages U = (U1, . . . , U�u), add
messages Ã = (Ã1, . . . , Ã�a), and removal messages R̃ = (R̃1, . . . , R̃�r ) as follows.
We first describe the case of users already in the group. User id starts by process-
ing the update messages given by the block as follows. Update message U� for
� ∈ [�u] has the form ((Δi, Ci)i, (C̃)i, ectr, σ, id). First, the user checks whether
the signature σ verifies under svk′

id and that ectr matches the value stored in
id .st . If one of the checks fails the update is discarded.

If id = id ′, i.e., U� is an update generated by the processing user, id
retrieves from Upending the corresponding update information ((Δi, δi)i, κ) with
i = {1,m, . . . , r} for some m, deletes it from Upending, and applies it to
their update path vn

id .path = (vn
1 , . . . , vnr ) with respect to Tnext as vn

i .pk ←
skuPKE.UpdP(vn

i .pk,Δi) and vn
i .sk ← skuPKE.UpdS(vn

i .sk, δi) (note that this
updates all key pairs on id ’s update path for which the user has access to the
secret key). Then they set Knext ← Knext ⊕κ. Else, let vu1 , . . . , vut

be the nodes
in vid .path ∩ vid′ .path such that id ∈ vui

.unm1 and ui ≥ m. Then, C̃ui
con-

tains an encryption of vui
.sk under id ’s leaf key vid .pk. For i ∈ [u1, . . . , ut],

id uses the corresponding secret key to recover vui
.sk and adds it to vui

.st
in T and Tnext unless the state already contains a secret key. Then id calls
id .st ← proc-path-upd(id .st , (Δi, Ci)i), which updates the keys affected by the
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update in the working copy Tnext of the ratchet tree (note that the secret keys
added in the previous step ensure id is able to decrypt the ciphertext relevant
to them), the working copy of the group key, and the list of merges to be imple-
mented at the end of the epoch.

After processing all update operations, id processes adds Ã and subsequently
removes R̃. First, they check that the signature included in a message verifies
and that the message was generated for the current epoch, discarding it if not.
In the case of an add message Ã� = (A�, T.stpub, (pkc, skc), U, ectr, σ, id) the
user processes the update message U as described above and appends A� to
Onext. For valid remove message R̃� = (R�, ectr, σ, id) the request R� is added
to Onext. Finally, if B was the last block of an epoch, i.e., B is the ith block
with i = 0 mod k, then id prepares the transition to the next epoch. To this
end, id recovers from Onext the ordered lists of merges M = (M1, . . . ,M�m),
adds A = (A1, . . . , ALa

), and removes R = (R1, . . . , RLr
) that were included in

the blocks of the current epoch. Then they apply these changes to the working
copy of the ratchet tree Tnext ← upd-tree(Tnext, A,R,M) to be used in the next
epoch, update T ← Tnext, increase the epoch counter to ectr ← ((ectr)1 + 1, 0),
set Onext to the empty list, and update the group key to K ← H1(“key”,Knext),
and afterwards Knext ← H1(“next”,Knext).

Let us now describe the second case, that is, that of users not in the
group. We distinguish two further cases according to whether id (a) was added
in an add operation or (b) in the group initialization (i.e., W �= ⊥). In
case (a) let Bp

1 , . . . , Bp
k be the blocks of the previous epoch. Then one of these

blocks contains an add message Ã = (A, T.stpub, (pkc, skc), U, ectr, σ, id) with
A = “add.user(id ′, id)” being the add request for user id . The user, after val-
idating the signature and epoch, incorporates T.stpub, (pkc, skc) in id .st . As
T.stpub is the ratchet tree of the previous epoch, id brings it up to date by pro-
cessing, in order, the blocks Bp

1 , . . . , Bp
k . Here, as they do not have access to any

secret keys of the tree, they only update the public keys. After this operation T
and its copy Tnext match the current epoch and the user adds to vid .stsec their
init decryption key and sskid , and then processes the current block B = (U,A,R)
as described above.

Finally, assume that id was added as part of the group initialization, i.e.,
case (b) above, with W = (T.stpub, (Δi, Ci)i, (pkc, skc), σ, id1). In this case
id checks that the signature σ verifies under svkid1 , rejecting it if this is
not the case. If id is the user who issued the initialization message, they
recover ((Δi, δi)i, κ) from their state, apply the update information to their
update path, set Knext ← κ, and K ← H1(“key”,Knext). If id did not issue
the initialization message, they incorporate (T.stpub, (pkc, skc)) in their state,
add to vid .stsec their init decryption key and sskid , set Knext to the zero string,
and run id ′.st ← proc-path-upd(id ′.st , (Δi, Ci)i) to update Tnext. K is set to
H1(“key”,Knext), Onext is initialized as empty list, as there are no merge, add,
or remove operations yet, and ectr ← (0, 0).

We conclude by describing the remaining operations of the CGKA scheme.
To extract the current group key, a user id fetches K from its state, and deletes
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this value afterwards. To send a protocol message, id simply uses the underlying
blockchain protocol to send it as a transaction to the blockchain. To fetch the
last blocks of operations, id uses the underlying blockchain protocol to retrieve
the blocks added to it since it last did.

4 Security

To analyze the modified protocol, we essentially use the security model from [27],
which allows the adversary to act partially active and fully adaptive. The only
differences in the setting of baCGKA are that 1) users are processing concurrent
messages, and 2) no messages will ever be rejected. It is however possible that
messages get lost and hence sent but not processed.

Asynchronous baCGKA security is defined through a game between an adver-
sary and a challenger, where the adversary can request to see arbitrary execution
patterns of the protocol, i.e. decide on how many parties to initiate a group key
agreement, then dictating parties to update their state (by posting a respective
message on the blockchain), remove/add other parties, download and process
updates, and also to start/end corruption of users (which leaks the users entire
state during the corrupted period). The adversary can decide on this sequence
of actions fully adaptively and can request arbitrary actions to be performed
concurrently. For security (see the full version of this paper [2] for the formal
definition), intuitively, we aim to guarantee that all group keys which were not
leaked to the adversary via (processing of updates using) corrupted keys remain
indistinguishable from random.

To precisely define the set of group keys for which we can guarantee security,
similar to previous work, we define a safe predicate. Intuitively, in our protocol
a group key will be considered safe if all users to which this key was communi-
cated (i.e., the current group members in the view of the party generating the
group key) have either performed a single update (with no-one else performing
a concurrent update) or participated in at least �log(C)+1 concurrent updates
(C denoting the total number of corrupted users since the last time the group
key was secure) since their last corruption, and furthermore have processed a
further own (potentially concurrent) update before the next corruption. This
is in contrast to the predecessor CoCoA [3], which also allows for concurrent
updates, but requires each party to perform �log(n) + 1 concurrent updates (n
being the group size, which can be assumed significantly larger than the number
C of corrupted parties). In the full version of this paper [2] we prove the following
theorem.

Theorem 1. If the secretly key-updatable public key encryption scheme used in
DeCAF is (εEnc, t)-IND-CPA-secure (t denoting the runtime, εEnc the advantage
of adversaries) and the used hash functions are modeled as random oracles, then
DeCAF is (O(εEnc ·2(nQ2)2), t, Q)-baCGKA-secure, where Q denotes the number
of oracle queries made in the security game.
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