
This paper is included in the Proceedings of the
12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’16).
November 2–4, 2016 • Savannah, GA, USA

ISBN 978-1-931971-33-1

Open access to the Proceedings of the
12th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Alpenhorn: Bootstrapping Secure Communication
Without Leaking Metadata

David Lazar and Nickolai Zeldovich, MIT CSAIL

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/lazar

Alpenhorn: Bootstrapping Secure Communication without Leaking Metadata
David Lazar and Nickolai Zeldovich

MIT CSAIL

Abstract
Alpenhorn is the first system for initiating an encrypted
connection between two users that provides strong privacy
and forward secrecy guarantees for metadata (i.e., infor-
mation about which users connected to each other) and
that does not require out-of-band communication other
than knowing the other user’s Alpenhorn username (email
address). This resolves a significant shortcoming in all
prior works on private messaging, which assume an out-
of-band key distribution mechanism.

Alpenhorn’s design builds on three ideas. First, Alpen-
horn provides each user with an address book of friends
that the user can call. Second, when a user adds a friend
for the first time, Alpenhorn ensures the adversary does
not learn the friend’s identity, by using identity-based en-
cryption in a novel way to privately determine the friend’s
public key. Finally, when calling a friend, Alpenhorn
ensures forward secrecy of metadata by storing pairwise
shared secrets in friends’ address books, and evolving
them over time, using a new keywheel construction. Alpen-
horn relies on a number of servers, but operates in an
anytrust model, requiring just one of the servers to be
honest.

We implemented a prototype of Alpenhorn, and in-
tegrated it into the Vuvuzela private messaging system
(which did not previously provide privacy or forward se-
crecy of metadata when initiating conversations). Exper-
imental results show that Alpenhorn can scale to many
users, supporting 10 million users on three Alpenhorn
servers with an average dial latency of 150 seconds and a
client bandwidth overhead of 3.7 KB/sec.

1 Introduction
To achieve privacy in a communication system, it is not
enough to just hide the contents of the messages sent or
received by a user. It is also important to hide who the
user is communicating with, at what time they are com-
municating, and whether they are communicating with
anyone at all; we refer to such information as metadata.
For instance, researchers have shown that they can learn
significant amounts of sensitive information by looking
at just what phone numbers a person called [33], who
the person emailed, their IP address, or social network
connections [18]. Similarly, NSA officials have also said
that metadata is crucial for surveillance [38].

Recent work shows that it is possible to build private
messaging systems that hide metadata at scale [10, 15,
19, 28, 29, 41, 43]. Unfortunately, these systems do not
provide users with a convenient way to bootstrap commu-
nication without leaking metadata in the process. This
impedes practical deployment and precludes any end-to-
end metadata privacy guarantees.

Alpenhorn is the first system to address this problem.
Functionally, Alpenhorn allows users to initiate a conver-
sation: that is, Alice can use Alpenhorn to call Bob, and
Alpenhorn will ensure that Bob knows that Alice is calling,
and that Alice and Bob agree on a fresh cryptographic
key, called a session key, to protect their conversation.
Alpenhorn is purely a bootstrapping protocol: the actual
conversation can take place through one of the systems
mentioned earlier. Crucially, Alpenhorn provides privacy
and forward secrecy of metadata. This means that an ad-
versary cannot determine who, if anyone, a user might be
calling at any given time, and even if the adversary later
compromises a user’s computer, they will not be able to
tell what calls the user made or received in the past.

To understand the challenges faced by Alpenhorn, con-
sider the traditional approach for establishing a session
key between users, which works in two steps. First, users
learn of each other’s long-term public keys, through some
public key infrastructure (PKI) system. In the second step,
users run a key exchange protocol, such as Diffie-Hellman,
to establish a fresh session key, and they use their long-
term keys to confirm each other’s identity. These two steps
correspond to the two challenges faced by Alpenhorn:

First, looking up a user’s public key can leak metadata
in itself. For instance, if Alice asks a key server for Bob’s
public key, and the adversary learns about this request, the
adversary now knows Alice is about to call Bob. This vio-
lates Alpenhorn’s goal of achieving privacy for metadata,
and most existing PKI systems operate in this manner.

Second, even if users somehow manage to obtain each
others’ public keys, long-term public keys are a poor fit
for metadata forward secrecy. Specifically, key exchange
protocols like Diffie-Hellman authenticate participants by
signing messages, which makes it obvious to an adver-
sary who the participants are. A strawman solution is
to encrypt these messages using the other user’s public
key, and to broadcast these messages, so that an adversary
cannot tell who the intended recipient is. Even ignoring
the performance overheads, this strawman fails to provide
forward secrecy, because any adversary that later com-

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 571

promises the recipient’s computer will obtain that user’s
long-term private key, and will be able to learn about all
past incoming calls received by that user, by decrypting
those messages.

Alpenhorn addresses these challenges using three ideas.
First, instead of using long-term public keys to encrypt key
exchange messages, Alpenhorn maintains an address book
on each user’s computer, containing a pairwise shared
secret for each of that user’s friends. This helps ensure
forward secrecy because there is no long-term encryption
key for an adversary to compromise.

Second, to allow users to add friends to their ad-
dress book, Alpenhorn uses identity-based encryption
(IBE) [7, 17, 39]. IBE is different from traditional public-
key cryptography, in that a user’s public key is purely a
mathematical function of their username, such as an email
address, together with a master public key from some
server.1 This allows Alpenhorn to compute a friend’s
public key without leaking the friend’s identity. As de-
scribed in §4, Alpenhorn extends IBE to handle server
compromises and to ensure forward secrecy.

Finally, Alpenhorn must also provide privacy and for-
ward secrecy for the metadata involved in actually initi-
ating a conversation. To do this, Alpenhorn uses a novel
keywheel construction, which continuously evolves all
shared secrets in a user’s address book, so as to provide
forward secrecy while still ensuring that, at any given time,
two friends have the same secret value in their address
books.

Alpenhorn relies on two sets of servers: the IBE servers,
mentioned above, and a set of mixnet servers, whose job
is to hide the source of every message. Both the IBE and
mixnet servers operate in the anytrust model, requiring
just one honest server for security. The use of a trusted
server allows Alpenhorn to achieve good performance,
compared to purely cryptographic approaches like pri-
vate information retrieval that do not trust any servers
at all. §3 describes Alpenhorn’s precise guarantees and
assumptions.

To evaluate Alpenhorn, we implemented a prototype in
Go, and integrated it with the Vuvuzela private messaging
system, which did not previously provide privacy or for-
ward secrecy for bootstrapping conversations. Integrating
Alpenhorn into applications is straightforward; modifying
Vuvuzela to use Alpenhorn required changing 200 lines
of code. Alpenhorn’s performance scales well with the
number of users: 3 Alpenhorn servers can support 10
million users with 5% of them initiating a conversation
every 5 minutes, with a modest client-side bandwidth cost
of 3.7 KB/sec. The client-side overhead in particular is
∼10× less than that of the equivalent dialing protocol in

1To achieve this, the user’s private key must be generated by a server
holding the corresponding master secret key.

Vuvuzela (which fails to provide the same privacy guaran-
tees).

In summary, the contributions of this paper are:

• Alpenhorn, the first system for establishing session
keys that provides privacy and forward secrecy for
metadata;

• a novel way of using IBE in an anytrust setting to
achieve metadata forward secrecy;

• the keywheel construction, which allows the Alpen-
horn client to establish fresh session keys with low
latency and low bandwidth overheads;

• a prototype implementation of Alpenhorn; and

• an experimental evaluation of Alpenhorn that demon-
strates it can scale to 10 million users.

2 Related work
A common way to bootstrap private messaging is to as-
sume that users have exchanged keys or secrets out-of-
band. For example, the Ricochet [13] private messag-
ing system requires a user to know the other person’s
Ricochet ID (a public key) to start a conversation. The
Pond [29] private messaging system uses a protocol called
PANDA [2] to establish relationships between users that
have previously shared a secret. In contrast, Alpenhorn
allows two users to start a conversation without know-
ing each other’s public keys or having a shared secret.
Alpenhorn can be used to bootstrap PANDA (see §8.5).

Both Ricochet and Pond use Tor’s hidden services [20].
Alpenhorn’s privacy guarantees are stronger than those of
Tor’s hidden services in two ways. First, hidden services
do not protect against traffic analysis. This is because
Tor has many ways for an adversary to infer information
based on traffic patterns. Alpenhorn uses techniques from
Vuvuzela [41] to defeat traffic analysis (achieving differ-
ential privacy). Second, hidden services have a weaker
adversary model for protecting metadata: e.g., an adver-
sary that compromises the rendezvous point of a hidden
service learns when that user is receiving calls. In contrast,
Alpenhorn provides metadata privacy under an anytrust
assumption (any N − 1 out of N servers can be compro-
mised).

DP5 [10] solves a related problem of online presence.
It enables users to query their friends’ online status (and
learn additional information, such as their current IP ad-
dress) without revealing metadata. DP5 assumes that
every user already has a list of all of his friends and their
public keys. This is precisely the problem that Alpenhorn
is designed to address: to allow users to add new friends
without knowing their public key, and to inform a user
that someone wants to add them as a friend (or wants to
call them).

572 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Identity-based encryption (IBE). Alpenhorn uses IBE
to exchange keys between two users for the first time.
IBE typically assumes a trusted server known as the pri-
vate key generator (PKG) that distributes private keys
to users. To avoid trusting a single server, Boneh and
Franklin [7] proposed using a distributed key generation
(DKG) scheme to distribute the master secret key among
multiple PKGs. Recently proposed DKG schemes require
3t + 1 or 2t + 1 servers to tolerate t dishonest servers, de-
pending on the communication model [25]. Our Anytrust-
IBE approach to distributing the PKG requires only 1
honest server, but this comes at the expense of availability
(Alpenhorn provides no fault tolerance). In future work,
we hope to explore whether more sophisticated crypto-
graphic constructions can further improve Alpenhorn’s
performance [16].

Private information retrieval (PIR) could, in principle,
provide an alternative to IBE for privately obtaining a
user’s public key [24]. To ensure forward secrecy, each
user would need to periodically generate fresh keys, and
upload them to a central database. Each user would also
need to perform fake PIR queries even if they are not inter-
ested in looking up a key, to avoid leaking at what times
the user is starting conversations. In practice, state-of-the-
art PIR implementations cannot handle tens of millions of
users each performing a query on a database containing
tens of millions of records. Most implementations require
quadratic [1, 28], or nearly quadratic [31] cost to handle
N queries on a database containing N items. In contrast,
Alpenhorn’s design achieves a total server cost that is
linear in the number of users, which enables it to sup-
port tens of millions of users. Alpenhorn’s overall design
also addresses an important challenge not faced by PIR:
informing a user that someone wants to call them, and
minimizing the bandwidth required for this notification.

Forward secrecy. IBE can achieve forward secrecy by
having users generate a different key for each day (e.g.,
by concatenating the date with their username [7], or by
using more efficient constructions [6]). A user can erase
old private keys so that they are not disclosed when an
adversary compromises the user’s computer. However,
this assumes that the IBE PKG server is not compromised:
a compromised PKG could re-compute all old user pri-
vate keys. In contrast, in Alpenhorn’s design, even if an
adversary compromises all PKGs, the adversary cannot
decrypt past messages.

Binary tree encryption (BTE) [14] also allows users to
forget old private keys to achieve forward secrecy. BTE
does not require any interaction or trusted servers, but it
also does not address two of the key problems faced by
Alpenhorn: obtaining public keys without leaking meta-
data, and informing a user that someone has added them

Functions provided by the Alpenhorn library
// Initialize an Alpenhorn account
func Register(email string)

// Get your long-term key to share with friends
func MySigningKey() PublicKey

// Send friend request to the given email address.
// Their public key for extra verification is optional.
func AddFriend(email string, theirSigningKey *PublicKey)

// Call a friend; returns a shared secret known only
// to you and the friend. The call’s intent is optional.
func Call(email string, intent int) SessionKey

Callbacks that must be implemented by the application
// This function is called when the client gets a friend
// request. Return true to accept the friend request.
func NewFriend(email string, theirSigningKey PublicKey) bool

// This function is invoked when client receives a call.
func IncomingCall(email string, intent int, key SessionKey)

Figure 1: Simplified Alpenhorn API.

as a friend. Another downside of BTE is that the keys are
much larger than in traditional public-key encryption.

The double ratchet algorithm [36] used by Signal and
WhatsApp [42] continuously rotates session keys between
users for forward secrecy, similar to Alpenhorn’s key-
wheel. The key difference is that the ratchet ensures for-
ward secrecy for data, whereas the keywheel produces
dialing tokens, which Alpenhorn uses to ensure forward
secrecy of metadata. Off-the-record messaging (OTR) [9]
similarly rotates keys to achieve forward secrecy for data
but does not hide metadata. Alpenhorn uses Bloom fil-
ters [5] to encode the dialing tokens produced by the key-
wheel, similar to the approach taken by AnoNotify [37].

3 Overview
To use Alpenhorn, the developer of a messaging applica-
tion must integrate their application with the Alpenhorn
client library, and specify a set of Alpenhorn servers that
the library should use.2 The API provided by the client li-
brary is shown in Figure 1. The API allows applications to
perform two main tasks: to add a friend (for when the user
asks the application to add a friend to their address book),
and to initiate a call with a friend (for when the user asks
the application to call a friend). Alpenhorn uses email
addresses to identify users; §4 discusses what happens if
an email server is compromised.

When a user starts the messaging application for the
first time, the application calls Register(), passing in
the user’s own email address. Register() will generate
a long-term signing key for the user, and register it with
Alpenhorn. The user will have to prove their identity to
the PKGs through confirmation emails.

Users can add friends by invoking the AddFriend()
function. For example, if Alice and Bob are both us-

2For simplicity, this paper assumes the application developer sets
up the Alpenhorn servers. Multiple applications can also share a set of
Alpenhorn servers, but this paper does not discuss the issues that are
involved in doing so.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 573

ing an Alpenhorn-based messaging application, and Al-
ice wants to add Bob as a friend, the application will
call AddFriend("bob@gmail.com", nil). In this exam-
ple, Alice did not have any prior knowledge of Bob’s
long-term signing key, so the second argument is nil.
However, Alice must know Bob’s email address ahead of
time; otherwise, there is no way for Alice to tell Alpen-
horn whom she wants to add as a friend.

On the other side of the world, Bob’s applica-
tion receives a callback from the Alpenhorn library,
NewFriend("alice@gmail.com", "e27scvh08m..."), and
displays the request to Bob. If Bob had out-of-band
knowledge of Alice’s signing public key, he could ver-
ify it before accepting the request; an application can
obtain the user’s own long-term signing key by calling
MyPublicKey(). Bob doesn’t know Alice’s long-term
signing key, but he knows that she recently registered
her email address with Alpenhorn, so he accepts the re-
quest knowing that the Alpenhorn servers have validated
her identity.

The application returns true from the NewFriend call-
back to indicate to the Alpenhorn library that Bob ac-
cepted the friend request. Internally, this causes the li-
brary to send a friend request back to Alice to confirm the
request.

After some time, Alice gets back the friend request
from Bob, which confirms that she is now friends with
him. At this point, Alice and Bob’s Alpenhorn libraries
have internally agreed on a shared secret, stored in their
keywheels, and the Alpenhorn library continuously rolls
forward this shared secret; however, this secret value is
not directly exposed to the application.

The next day, Alice opens a chat window for Bob in her
messaging app, which causes the application to invoke
Call("bob@gmail.com", 0). The second argument, 0,
is an application-specific intent that is passed along to
the application on the other side; we discuss intents
more in §5.3. In Alice’s client, the Alpenhorn library
returns a fresh shared key that Alice’s application
should use for the conversation, such as "3xdq9t7vP0...".
Shortly afterward, Bob’s Alpenhorn library invokes the
IncomingCall("alice@gmail.com", 0, "3xdq9t7vP0...")
callback, and the application tells Bob about an incoming
call from Alice. If he accepts, Alice and Bob can start
talking to each other through the application’s private
messaging protocol, using the fresh key "3xdq9t7vP0...".

3.1 Overall design
Figure 2 shows the major components of Alpenhorn. Each
Alpenhorn client maintains a long-term signing key, de-
scribed above, and an address book, consisting primarily
of a keywheel table, which stores and rolls forward shared
secrets with each of that user’s friends. In addition to
the client library, Alpenhorn relies on two sets of servers:

Bob

Alice

PKG PKG PKG

Mixnet
Mailboxes

5

1
2

3

4

6

Ke
yw

he
el
s

Figure 2: Overview of what happens when Bob adds Alice as a friend
using Alpenhorn’s add-friend protocol.

a set of private-key generator (PKG) servers, used for
identity-based encryption, and a set of mixnet servers,
used to hide which client submitted which request.

Alpenhorn consists of two protocols: the add-friend
protocol for adding a friend to an address book, given their
email address, and the dialing protocol for establishing
a new conversation with a friend, which we describe in
more detail in §4 and §5, respectively. This split allows
Alpenhorn to achieve good performance. The add-friend
protocol uses public-key cryptography, which is neces-
sary to bootstrap communication with a new friend, but
is relatively expensive (and thus has a higher latency).
The dialing protocol uses symmetric-key cryptography,
which allows existing friends to perform low-latency key
exchanges. Figure 2 shows the add-friend protocol, which
we will now describe; the dialing protocol is similar.

Alpenhorn clients send requests in periodic rounds,
which are coordinated by the first mixnet server. Each
client submits a fixed-size request to the mixnet in every
round, shown by step 1, even if they don’t want to add a
friend at that moment. This provides cover traffic, so that
an adversary cannot learn anything about who the user
might be communicating with from the fact that a client
is sending messages to Alpenhorn servers.

Requests are encrypted for the intended recipient, so
that an adversary cannot decrypt the request’s contents
without the recipient’s private key. The caller obtains
the recipient’s public key using identity-based encryption,
which allows the client to obtain a given recipient’s public
key by simply computing it, without having to query any
server for it. To ensure forward secrecy, the recipient’s
public key changes each round, and the recipient’s client
deletes each round’s private key at the end of the round.

In step 2, the mixnet shuffles the requests for a given
round, and adds additional noise to mask any statistical
information that an adversary might learn at the end of the
mixnet. The mixnet operates in an anytrust model; just
one honest mixnet server is sufficient to provide security.
Alpenhorn uses the Vuvuzela mixnet design [41], which
adds enough noise to achieve differential privacy.

574 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

At the end of the mixnet, shown by step 3, client re-
quests are distributed into mailboxes based on the intended
recipient of the request. The request includes the destina-
tion mailbox ID in plaintext form for this purpose; it is
computed by the client as the hash of the recipient’s email
address modulo the number of mailboxes; many users
share the same mailbox. A special mailbox ID is used for
cover traffic, so that it need not be processed further.

Each client then downloads their mailbox, in step 4. In
step 5, the client contacts every PKG server to obtain its
private key for this round. Alpenhorn combines the pri-
vate keys from all PKG servers to ensure security as long
as just one of them is honest. Then in step 6, the client
tries to decrypt every request in the mailbox using the
private keys for this round. If the decryption succeeds, the
Alpenhorn client processes the incoming add-friend re-
quest, adds the resulting key to its keywheel, and sends an
acknowledgment back (as another add-friend request). If
the decryption fails, the request must have been intended
for someone else, or was noise.

The dialing protocol works similarly, but significantly
reduces the size of the mailbox using a Bloom filter [5] to
efficiently encode a set of values submitted by clients. §5
describes the dialing protocol in more detail.

3.2 Security goals
Alpenhorn’s security goals are motivated by the private
messaging applications that Alpenhorn is aiming to sup-
port, such as Vuvuzela [41], Pung [1], and Pond [29];
specifically, Alpenhorn’s guarantees should meet or ex-
ceed those of the application itself. Alpenhorn focuses
on privacy, and does not achieve fault tolerance (a single
server can make Alpenhorn unavailable). Specifically,
Alpenhorn’s guarantees are as follows:

Authenticated key exchange. A powerful adversary, ca-
pable of compromising servers and tampering with traffic,
must not be able to learn the session keys generated by
Alpenhorn. Alpenhorn must also prevent the adversary
from impersonating other users, meaning the adversary
should not be able to send friend requests or calls on
behalf of an email address the adversary does not own.

Privacy for metadata. Alpenhorn should not reveal
metadata about friends or calls (i.e., whom, if anyone,
you call or add as a friend, or who, if anyone, calls you or
adds you as a friend) even after the application has been
running for a long time. Specifically, Alpenhorn provides
differential privacy for this metadata, as formalized in
Vuvuzela [41].

Forward secrecy for metadata. If the secret state of a
server or client is compromised, the adversary must not be
able learn metadata or the contents of messages sent in the
past. An adversary can store all past traffic, in the hope
of one day acquiring the private key of a server or client,

so providing forward secrecy means that encryption keys
must be short-lived and erased quickly after use.

An adversary that compromises a user’s computer can,
of course, obtain the contents of the address book from the
user’s chat application. This would allow the adversary
to learn about a set of friends that the user may have
talked to. If the user is concerned about this, they can
remove a friend from their address book, at which point
Alpenhorn’s guarantees would prevent the adversary from
determining if these two users were or were not friends in
the past.

Worst-case security. If all servers are compromised,
Alpenhorn is unable to offer privacy or forward secrecy
for metadata. Nonetheless, Alpenhorn provides at least
the same security guarantees as existing key-exchange
protocols, even if all servers are compromised; specifi-
cally:
• If users have out-of-band knowledge of each other’s

public keys, Alpenhorn’s API can use them to defeat
man-in-the-middle attacks, as in existing protocols.

• Alpenhorn’s client uses an SSH-like trust-on-first-use
(TOFU) approach if out-of-band keys are not provided,
by remembering the friend’s long-term signing key
from their first add-friend request. If two users called
AddFriend when at least one server was honest, then
a later compromise of all servers does not allow an
adversary to mount a man-in-the-middle attack.

• In the absence of out-of-band keys, Alpenhorn could
require each user to register their public key in a verifi-
able ledger (such as Keybase [26] or Namecoin [35]),
and to send a proof to new friends that their key is
registered in such a ledger. Depending on the sce-
nario, this can prevent man-in-the-middle attacks or
allow a user to detect that someone is impersonating
them; we have not implemented this in our Alpenhorn
prototype.

• If a client’s state is compromised, then future inter-
action with that client is compromised. The user can
recover by revoking all of his friendships and sending
a new AddFriend request to each of his friends.

3.3 Threat model
Alpenhorn assumes an adversary that controls all but one
of the Alpenhorn mixnet servers and all but one of the
PKG servers (users need not know which ones), controls
an arbitrary number of clients, and can monitor, block,
delay, or inject traffic on any network link. Alpenhorn as-
sumes that the client machines of legitimate users are not
compromised, and that the client software properly imple-
ments the Alpenhorn protocol. Alpenhorn does not protect
against malicious servers mounting denial-of-service at-
tacks, but it is resilient to client denial-of-service attacks.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 575

For forward secrecy, Alpenhorn assumes that the Alpen-
horn client can irrevocably delete data from memory or
disk (e.g., a cryptographic key or an address book entry).
Forward secrecy guarantees could be subverted on short
time scales by cold boot attacks [22], and on longer time
scales by a storage system on the user’s computer that
allows recovering previously erased data (e.g., an SSD
that does not overwrite data in place). Alpenhorn servers
must also be able to securely erase memory, but they never
store encryption keys on disk.

We make standard cryptographic assumptions like se-
cure public and symmetric key encryption, Diffie-Hellman
key-exchange, signature schemes, and hash functions. We
also assume the security of pairing-based cryptography3

which we use for identity-based encryption in §4.
We assume that the long-term signing public keys of the

Alpenhorn servers are known to all users. These keys can
be distributed in the Alpenhorn software package, similar
to how web browsers ship with a list of CA keys.

Alpenhorn uses email addresses to identify users, and
thus relies on the user’s email provider for bootstrapping
user identity. This boils down to two assumptions. First,
when user A adds user B as a friend, A should know B’s
email address, and should be sure that B successfully reg-
istered for an Alpenhorn account under B’s email address.
Second, each user must periodically connect to Alpenhorn
(at least once every 30 days) to prevent their Alpenhorn
account from being reset by an adversary that may have
compromised the user’s email account. §4.6 describes
Alpenhorn’s use of email in more detail.

4 Add-friend protocol
When Alice adds Bob as a friend using the API shown in
Figure 1, her client constructs a friend request that con-
tains her email address, her public key, some signatures,
and other sensitive data (as shown in Figure 3). Since the
friend request contains sensitive information, Alice needs
to encrypt it so that only Bob can read it. However, Alice
does not have Bob’s public key, and she can’t ask a server
to look it up, because that would leak metadata.

The add-friend protocol uses identity-based encryption
(IBE) to enable Alice to encrypt her friend request using
Bob’s email address as the public key, as explained in
§4.1. Since Alice already knows Bob’s email address, this
approach does not require any directory lookup and thus
leaks no metadata. However, IBE traditionally assumes
a trusted server to distribute private keys, which does
not align with Alpenhorn’s goals. We describe how we
distribute the trust among multiple servers in §4.2.

Using IBE, Alice proceeds to encrypt the request, and
sends it to a shared mailbox, which is a publicly known
memory location on one of the Alpenhorn servers. The

3 Chen et al [16] discusses the assumptions behind pairing-based
cryptography; it has been deployed in systems such as Zerocash [4].

contents of this mailbox are visible to the servers and
available for all clients to download, so Alpenhorn must
ensure that Alice’s client does not reveal any metadata in
the process of placing the request in the mailbox.

First, Alpenhorn must ensure that the encrypted friend
requests in the mailbox do not reveal the email addresses
of recipients for which they are encrypted. This property
is known as ciphertext anonymity and is discussed in §4.3.
Second, the keys used to produce the encrypted friend re-
quests must be destroyed quickly. Otherwise, an attacker
will keep a copy of the mailbox contents indefinitely, in
hopes of one day compromising the private keys. This
property is known as forward secrecy and is discussed
in §4.4. Finally, we must prevent the adversary from
learning who sent the friend requests, even in the face
of sophisticated attacks like traffic analysis or tracking
patterns in the number of messages in a mailbox. We
borrow techniques from prior work on metadata privacy
to ensure that an adversary does not learn who is friending
whom, by adding noise messages to the mailbox [41], as
discussed in §6.

Bob’s client eventually downloads the mailbox from
the server, containing encrypted friend requests. Bob also
obtains his private key for that round from the private key
generators (PKGs). Using his private key, Bob’s client
attempts to decrypt each friend request in the mailbox.
When the client succeeds in decrypting one, the request is
validated using the protocol in §4.5, and Bob is prompted
to accept the request. If Bob accepts, his client sends a
friend request back to Alice as an acknowledgment.

4.1 Identity-based encryption
Identity-based encryption (IBE) is a relatively new cryp-
tographic primitive in which any username string (such as
an email address) can be used as a public key. Typically,
IBE assumes a single trusted party that knows everyone’s
private key, but we will see shortly that Alpenhorn dis-
tributes trust among many independent servers and that
only one of these servers must remain honest.

For now, suppose there is a trusted server known as
the private key generator (PKG). The PKG has a master
public key Mpub known to all, and a master secret key
Mpriv known only to itself. An IBE scheme provides the
following functions:
• Encrypt(Mpub, identity,msg)→ ctxt

which encrypts a message to some identity string (e.g.,
a username, email address, or other unique identifier).

• Decrypt(identitypriv, ctxt)→ (msg, ok)
which decrypts a ciphertext using the private key cor-
responding to some identity string.

• Extract(identity,Mpriv)→ identitypriv

which computes the private key corresponding to some
identity string.

576 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

The PKG verifies the identities of users and issues to
them private keys corresponding to their identities. For
example, suppose the PKG identifies users by their email
address. When Bob asks the PKG for the private key
corresponding to "bob@gmail.com", the PKG can send a
random nonce to that email address. If Bob can produce
that nonce, the PKG gives him the private key for that
email address. In practice, Alpenhorn uses a more secure
scheme to authenticate email addresses, described in §4.6.

IBE’s power comes from the fact that anyone with Mpub
can encrypt a message to another user without any direc-
tory lookups, as long as they know the recipient’s identity.
Avoiding communication for looking up the recipient’s
public key avoids the possibility of that communication
being intercepted by an adversary to learn metadata.

4.2 Distributing trust
Using a single trusted PKG means that if it were compro-
mised, the adversary would be able to compute the IBE
private keys of every user. To avoid this, Alpenhorn uses
multiple independent PKGs. A naïve approach would be
to onion-encrypt a message using the master public key
of each PKG in turn. For example, suppose there are n
PKGs with master public keys M1

pub . . .M
n
pub. To encrypt

an add-friend message for Bob, Alice could compute:

Encrypt(M1
pub, “bob@gmail.com”,

Encrypt(M2
pub, “bob@gmail.com”, · · ·

Encrypt(Mn
pub, “bob@gmail.com”,msg) · · ·))

To decrypt this ciphertext, Bob must obtain the private
key for his email address from each of the n PKGs. Now,
even if many PKGs are compromised, the ciphertext stays
private as long as one of the master secret keys (and Bob’s
corresponding private key) is unknown to the adversary.
Although this would achieve Alpenhorn’s security goals,
it is inefficient because each layer of encryption adds
additional space overhead, and because Bob’s decryption
takes time proportional to the number of PKGs.

Alpenhorn introduces a more efficient scheme, called
Anytrust-IBE, that achieves the same goal of distributing
the trust among n PKG servers, by adding together the
master public keys in the Boneh-Franklin IBE scheme [7]:

Encrypt(
n∑

i=1

Mi
pub, “bob@gmail.com”,msg)

Bob can decrypt this ciphertext by adding his private keys:

Decrypt(
n∑

i=1

identityi
priv, ctxt)

This scheme is efficient: once Bob obtains and adds up
his private keys, neither the ciphertext size nor the decryp-
tion time depend on the number of PKGs. A technical
report [30: §A] provides more details and a proof of secu-
rity for Anytrust-IBE.

type FriendRequest struct {
SenderEmail string
SenderKey SigningKey
SenderSig Signature
PKGSigs MultiSignature
DialingKey DiffieHellmanKey
DialingRound int

}

Figure 3: Alpenhorn friend request.

4.3 Ciphertext anonymity
To avoid leaking metadata, it is important that encrypted
friend requests (produced by the IBE Encrypt function) do
not reveal the intended recipient. This property is known
as ciphertext anonymity [11], and it is not generally true of
IBE schemes [12]. Alpenhorn deliberately uses the Boneh-
Franklin IBE scheme [7] because it is one of the few IBE
schemes with this property. Ciphertext anonymity is also
necessary to generate noise messages in the mixnet (§6).

4.4 Forward secrecy
The encrypted friend requests created by the add-friend
protocol eventually become public, so it is crucial that the
keys to the ciphertext are destroyed quickly to limit the
possibility of compromise. For IBE ciphertexts, there are
two keys we worry about: the identity private keys held by
users and the master secret keys held by the PKGs. When
both sets of private keys are destroyed, ciphertexts created
with the corresponding public keys become useless to the
adversary. Better yet, in Anytrust-IBE, only one (rather
than all) of the PKGs must destroy its master secret key
to achieve forward secrecy.

The add-friend protocol operates in rounds to achieve
forward secrecy. Every round, the PKGs create new mas-
ter keys, and broadcast the public keys for that round
to the users. Users must then obtain their private keys
for that round from each PKG. After a preconfigured
amount of time or after all users have obtained their pri-
vate keys, each PKG deletes its master secret key for the
round. Users also delete their identity private keys af-
ter downloading and scanning their mailbox for friend
requests.

4.5 Authenticating requests
Figure 3 shows the structure of a friend request, obtained
after decrypting a ciphertext in the add-friend mailbox.
The request includes the sender’s email address (e.g.,
“alice@gmail.com”), but how does the Bob the recipient
verify that the friend request really came from Alice?

To authenticate the request, Alpenhorn’s includes two
signatures in the friend message. First, the SenderSig is a
signature over the entire friend request using the sender’s
long-term signing key, SenderKey. If Bob happens to
somehow know Alice’s long-term key (e.g., because he
got Alice’s business card, which lists her signing public
key), he can verify the authenticity of the message by

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 577

verifying SenderSig using the key he obtained out-of-
band.

If Bob does not know Alice’s long-term signing key,
Bob’s client can rely on the PKGs to authenticate Alice.
Specifically, when a user’s client acquires the user’s IBE
private key, each PKG also responds with a signature of
the user’s long-term key and email address. The friend re-
quest includes a multi-signature [8], PKGSigs, which com-
bines the signatures from all PKGs into a single compact
value. Bob can check PKGSigs to ensure that SenderKey
belongs to SenderEmail, as long as at least one PKG is
honest.

4.6 Registering email addresses
Every round, users must authenticate to the PKG in or-
der to obtain their private keys. To avoid manual user
involvement at every round, Alpenhorn splits authentica-
tion into two steps: first, a manual account registration
step, and second, an automatic private-key-generation
step. The second (key-generation) step is straightforward:
each PKG keeps track of the long-term signing key for
every registered email address, and users can obtain their
IBE private key for a round by signing a request with their
long-term signing private key. The first registration step,
however, is more complicated because it involves trusting
the user’s email account provider to bootstrap the user’s
identity.

When using Alpenhorn for the first time, Alice regis-
ters her email address with her long-term signing key at
each PKG. Each PKG sends Alice a confirmation email
containing a secret token, which Alice must send to the
PKG to finish the registration.4 After registration, each
PKG locks the user’s email address to that user’s long-
term signing key, to prevent anyone else (e.g., a malicious
email provider) from re-registering the address.

There is no quick way to reset an account; otherwise
an attacker could perform a man-in-the-middle attack just
by compromising Alice’s email address. To deal with
a situation where the user’s long-term private key is no
longer available (e.g., due to a disk failure), Alpenhorn
institutes a lockout policy: if 30 days pass without a
legitimate attempt to acquire the user’s IBE private key,
a PKG allows re-registering that email address with a
new long-term signing key, using email verification as
described above.

An adversary with access to a user’s email account may
register that email address before the legitimate user has
a chance to do so himself. This poses a risk when a user
adds a friend: is that friend’s account registered by the
friend, or by someone else that compromised their email
account? To address this issue, it suffices for a user to

4To avoid receiving a separate confirmation email from each PKG,
Alice could send a single DKIM-signed email message [23] containing
her long-term signing key, which each PKG could independently verify.

H1Kr Kr+1

H2

intent

dial token

Kr+2

H2

intent

dial token

H3 session key

H1

H3 session key

Figure 4: Overview of keywheel operations. Kr is a shared secret key
in the keywheel at round r. Hi is a keyed family of cryptographic hash
functions (such as HMAC-SHA256), with subscript i denoting the key.

learn one bit of information from their friend: namely,
whether they successfully registered for an account in
Alpenhorn. This bit can be conveyed informally (e.g., by
announcing “contact me using Alpenhorn”), so as to min-
imize the need to exchange information out-of-band prior
to using Alpenhorn. Once a user successfully registers
for an account on all PKGs, and connects at least once
every 30 days, Alpenhorn’s lockout policy ensures that a
compromised email account cannot be used to take over
the user’s Alpenhorn account.

4.7 Computing a shared secret
Once two clients have exchanged add-friend messages
through Alpenhorn, they can compute a shared secret us-
ing the standard Diffie-Hellman key-exchange protocol.
Specifically, the DialingKey in the add-friend message
represents the public part of an ephemeral public-private
key pair generated by each client for that request. Upon
receiving the other party’s DialingKey, a client combines
its private key with the other party’s public key to com-
pute a secret key known only to these two clients. The
DialingRound value helps the two clients synchronize
their keywheels, as described in the next section.

In summary, Alpenhorn’s add-friend protocol allows
two clients to establish a shared secret. It achieves pri-
vacy for metadata by using distributed IBE with ciphertext
anonymity; achieves forward secrecy by using short-lived
IBE keys; and achieves authentication through its email
registration protocol, PKG signatures on user keys, and op-
tional out-of-band key distribution. The client pseudocode
for the add-friend protocol is shown in Algorithm 1.

5 Dialing protocol
Once the add-friend protocol establishes a shared secret
between two clients, the dialing protocol allows clients
to repeatedly establish conversations and obtain fresh,
ephemeral keys for these conversations. The dialing pro-
tocol faces two challenges: providing forward secrecy,
and providing low latency (compared to the add-friend
protocol). The dialing protocol addresses these challenges
using a keywheel construction, shown in Figure 4. A key-
wheel stores a shared key, and performs two operations
on it.

578 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1 Add-friend round: client

Consider a user Alice, with email address idAlice and signing
key pair (pkAlice

sign , skAlice
sign). Each mixnet server i (1 ≤ i ≤ n) has

a short-lived public encryption key pki
enc. Each PKG server j

(1 ≤ j ≤ N) has a long-term signing key pk j
sign, and a short-

lived IBE master key pk j
ibe. K is the total number of add-friend

mailboxes for this round. Alice’s client takes the following steps
for each round r:

1. Acquire private keys (assuming Alice already registered
her email address): Alice uses skAlice

sign to authenticate to each
PKG server. Each server, if authentication succeeds, returns
private key sk j,Alice

ibe and signature σ j of (idAlice, pkAlice
sign , r) us-

ing pk j
sign.

2a. Sign and encrypt request (if Alice wants to introduce her-
self to Bob, whose email address is idBob): Create the request
m = (idAlice,

∑N
j=1 σ

j, pkAlice
sign , σ, pkAlice

dh ,w), where pkAlice
dh is a

freshly generated Diffie-Hellman key to be used in dialing
round w, and σ = Sign(skAlice

sign , (idAlice, pkAlice
dh ,w)). The mail-

box is b = H(idBob) mod K. Using IBE, encrypt the request
to get en+1 = (b,EncIBE(

∑N
j=1 pk j

ibe, idBob,m)).

2b. Construct fake request (if Alice does not want to introduce
herself to anyone this round): Set en+1 = (K, 0ℓ) where ℓ is
the length of an IBE-encrypted request as above.

3. Onion wrap the request and send it to the mixnet:
Encryption happens in reverse, from server n to server
1, as server 1 will be the first to decrypt the request.
For each server i, generate a temporary keypair (pki, ski).
Then, re-encrypt ei+1 with si = DH(ski, pki

enc) to get ei =

(pki,Enc(si, ei+1)).

4. Download and scan mailbox: Download the mailbox
H(idAlice) mod K. For each ciphertext c in the mailbox,
attempt (m, ok) = DecIBE(

∑N
j=1 sk j,Alice

ibe , c). If decryption
succeeds, then m = (id, σservers, pkid

sign, σ, pkid
dh,w).

Let ok1 = Verify(
∑N

j=1 pk j
sign, σservers, (id, pkid

sign, r)) and let
ok2 = Verify(pk, σ, (id, pkid

dh,w)). If ok1 ∧ ok2, then notify
the user of the friend request from id.

5. Compute shared secret: If id is a new friend and Alice
accepts the request, generate a fresh Diffie-Hellman keypair
(pkAlice

dh , skAlice
dh), and send an add-friend request with pkAlice

dh
to id in the next round. Otherwise, id is a friend Alice added
in a previous round with keypair (pkAlice

dh , skAlice
dh), and now

the friend is confirmed. In either case, compute shared secret
s = DH(skAlice

dh , pkid
dh) and add (id, s,w) to the keywheel table.

First, in every round of the dialing protocol, the key-
wheel updates the key, by hashing it with a cryptograph-
ically secure hash function. This is represented by the
evolution of kr into kr+1 and so on in Figure 4. By updat-
ing the key, a client ensures that an adversary that com-
promises a client at some time will be unable to obtain
any keywheel state from prior rounds. Alpenhorn clients
securely erase the old key when performing keywheel
updates.

Second, the keywheel can generate dial tokens that the
user will send out to signal their intention to call a friend.
Dial tokens are generated by applying a different hash
function to the current round’s key. Figure 4 shows the
client generating dial tokens in rounds r and r + 2. A
dial token is a 256-bit value; this is much shorter than the
size of the request in the add-friend protocol, and allows
the dialing protocol to be efficient. Since the 256-bit dial
token is pseudo-random, an adversary that does not know
the keywheel state of two friends cannot predict what dial
token they might use in a given round. An additional
intent is hashed along with the key, as we will describe
shortly.

Alpenhorn clients call each other by sending dial to-
kens to a mailbox through the Alpenhorn mixnet. To call
a friend, an Alpenhorn client simply computes the dial to-
ken for a given round, with an application-supplied intent
value, and sends it through the mixnet. To check if a friend
is calling, a client downloads the list of dial tokens for that
round, and computes all possible dial tokens that each of
its friends could have sent in that round. Since two friends
have the exact same keywheel state in a given round, a
client can easily compute all of the possible incoming dial
tokens, by enumerating all of its friends, and all possible
intent values; this is cheap to do because hashing is fast
and the number of intents is typically small.

If a client finds a dial token from a friend in the mailbox,
the client invokes the IncomingCall callback to inform
the application of the incoming call. The session key
for the conversation is computed by hashing that round’s
key from the keywheel with a different hash function, as
shown in Figure 4. The use of this hash function is a
precaution, so that if an application inadvertently leaks
a session key, it does not compromise future keywheel
states.

Finally, Alpenhorn encodes the set of dial tokens in a
mailbox using a Bloom filter to reduce the client band-
width required to download the contents of a mailbox.

5.1 Keywheel synchronization
An Alpenhorn client maintains keywheels for each friend,
as shown in Figure 5, consisting of a shared key and a
round number. When two friends establish a shared secret
through the add-friend protocol, this shared secret is added
to the clients’ respective keywheel tables. It is important
for the clients to agree on the round number corresponding
to this initial key; Alpenhorn uses the DialingRound field
from the add-friend request for this purpose.

To maintain forward secrecy, an Alpenhorn client must
update the keywheel state over time and discard old keys.
However, the client needs to be able to generate dial to-
kens for the current round, and to check for incoming dial
tokens. Thus, the client advances its keywheels to round
r + 1 as soon as it has both sent any possible dial requests

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 579

Alice’s Keywheel table at round 25
Friend Secret Key Round

bob@gmail.com gZbkHyECIhQJ0XaQcKm 25
joanna@foo.edu s1lJ5kRWp73M4WEMI09 25
chris@hotmail.com W9uoocTsoYToW1A7nH7 28

↓

Alice’s Keywheel table at round 26
Friend Secret Key Round

bob@gmail.com AUuJw64TXCAFabdbCGp 26
joanna@foo.edu z3XukuxRR4dUnkrWpYr 26
chris@hotmail.com W9uoocTsoYToW1A7nH7 28

Figure 5: Evolution of a client’s keywheel table. The keywheel entry for
chris@hotmail.com has a round number higher than the current round
because it was recently established through the add-friend protocol, and
Chris’s client supplied a DialingRound value of 28.

for round r, and checked the mailbox from round r for
possible incoming dial tokens.

If a client cannot download the mailbox for some round,
it keeps retrying; the mailbox contents is public state and
is maintained by the Alpenhorn servers for a relatively
long time. After some time (e.g., a day), the Alpenhorn
client gives up trying to fetch the mailbox for an old round,
and advances the keywheels to preserve forward secrecy.

5.2 Bloom filter encoding
Alpenhorn optimizes the dialing protocol by encoding the
mailbox contents as a Bloom filter [5], which reduces the
size of the mailbox that the clients must download, and in
turn enables the dialing protocol to run more frequently.
The encoding is done by the last server in the mixnet,
which is responsible for choosing the optimal parameters
to encode a given number of dial tokens into a single
Bloom filter.

A Bloom filter allows clients to determine if a dial token
is present in the mailbox, with no false negatives, and a
small probability of a false positive. No false negatives
means that Alpenhorn never misses an incoming call. A
false positive translates into the Alpenhorn client invoking
the IncomingCall callback even though the friend did not
initiate a call. Alpenhorn tunes the Bloom filter to provide
a low false positive rate of 10−10 (which roughly translates
into one phantom incoming call in over a decade), using
48 bits per element in the Bloom filter. This is a significant
savings over the 256-bit size of the dial token.

5.3 Intents
Alpenhorn’s target messaging applications have relatively
high overheads associated with setting up and tearing
down conversations, and may have limits on how many
active connections a user may have at a time. For instance,
Vuvuzela allows a user to be active in only one conversa-
tion at a time, so if a user receives an incoming call, they
may need to drop one conversation to start a different one.

To convey additional information, Alpenhorn allows an
application to pass a small integer along with a call, to

help the recipient decide how to respond to the incoming
call, before a conversation is established. For example,
the following might be useful intents for a messaging
application to inform the recipient of the nature of the call:
(1) let’s chat right now; (2) let’s chat soon; (3) call me back
when you’re free. An application informs the Alpenhorn
client ahead of time how many intents it plans to use, so
that the client can enumerate all possible incoming dial
tokens.

6 Sender anonymity
Alpenhorn uses the Vuvuzela mixnet design [41] to ensure
that an adversary cannot determine which client sent any
given request in a mailbox, and cannot correlate a user’s
requests with mailbox activity over time (more precisely,
Alpenhorn achieves differential privacy, as formalized for
a messaging protocol by Vuvuzela).

The mixnet works by arranging a fixed, small number
of servers in a chain (e.g., three servers). Each server
receives all of the requests for a round, decrypts them
using its private key, re-orders them randomly, and sends
them to the next server in the mixnet chain. Each server
also adds a number of noise messages destined to each
mailbox, chosen according to a Laplace distribution with
a configurable mean amount of noise µ. As long as one
server in the mixnet chain is honest (i.e., does not reveal
either its private key or its random re-ordering), an ad-
versary cannot determine which incoming request (if any,
due to noise) corresponds to a particular outgoing request.

Achieving good performance requires striking a bal-
ance in terms of the number of mailboxes. If there are too
few mailboxes, each mailbox will contain a large number
of requests, and clients will have to download a lot of data
each round. If there are too many mailboxes, the servers
will be overwhelmed by noise requests, since each mail-
box receives the same average amount of noise, regardless
of how many mailboxes there are. Alpenhorn aims to
strike a good balance by ensuring there is a roughly equal
amount of noise and real requests in each mailbox.

7 Implementation
To evaluate Alpenhorn’s design, we implemented a proto-
type in approximately 10,000 lines of Go code:

https://github.com/vuvuzela/alpenhorn

Our implementation of IBE uses the BN-256 elliptic
curve [3] (implemented in AMD64 assembly [34]), which
targets the 128-bit security level. Recent improvements
in cryptanalysis that were published after we built our
prototype suggest that BN-256 actually provides less than
96 bits of security [27]. We hope to adopt a more suitable
curve in the future to address this, but we do not expect
this to have a dramatic impact on our performance results.

580 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/vuvuzela/alpenhorn

Our prototype implements an entry server, which is
separate from the mixnet and IBE servers. The entry
server’s job is to manage a large number of WebSocket
connections from clients, announce when a new round is
starting, and aggregate client requests into a single batch
that is sent to the Alpenhorn servers. The entry server is
not trusted.

Finally, to distribute the add-friend and dialing mail-
boxes to many users, our prototype relies on a content
distribution network (CDN), such as Akamai.

8 Evaluation
We quantitatively answer the following questions:
• What is the latency for adding a friend and initiating

a conversation through Alpenhorn, and what is the
client overhead imposed by Alpenhorn? (§8.2)

• Can Alpenhorn support a large number of users, and
how does it scale when adding more servers? (§8.3)

• How does Alpenhorn handle skewed workloads,
where some users are highly popular? (§8.4)

• How much effort is required to integrate Alpenhorn
into a private messaging application? (§8.5)

• How would Alpenhorn’s performance be impacted if
new weaknesses are discovered in the pairing-based
cryptography that Alpenhorn’s IBE relies on? (§8.6)

The results suggest that Alpenhorn can provide acceptable
performance for private text messaging applications that
tolerate latency on the order of minutes, such as Vuvuzela.

8.1 Experimental setup
To answer some of the above questions, we ran experi-
ments on Amazon EC2. Each server ran on a c4.8xlarge
virtual machine running Linux 4.4 with 36 Intel Xeon
E5-2666 v3 CPU cores, 60 GB of RAM, and 10 Gbps of
network bandwidth. We compiled the code with Go 1.7.

Unless otherwise specified, our experiments used a
chain of three servers, each corresponding to one VM.
Each of these servers also ran a PKG. We used one ad-
ditional VM to run the entry server. The first server in
the chain and the entry server were located in the Virginia
EC2 region. The second server was located in Ireland and
the third server in Frankfurt, Germany. For experiments
with more servers, we used the same three regions in a
cycle.

Clients were simulated on five c4.8xlarge VMs in Vir-
ginia (each individual client was limited to using at most 4
cores). To avoid establishing millions of TCP connections,
we opened 1,000 connections from each client VM to the
entry server, and assigned multiple clients to each TCP
connection. We did not use a CDN in our experiments for
distributing mailboxes; instead, only a small number of
clients downloaded their mailbox in each round (enough

to report sound measurements). Each round, 5% of gener-
ated requests were real (not cover traffic). For example, to
simulate one million users in the add-friend protocol, we
generated 50,000 AddFriend requests, and 950,000 cover
traffic messages. For dialing experiments, each client had
1,000 friends in their address book, and the maximum
number of intents was 10. Unless otherwise noted, our
experiments assume that all users are equally popular.

Each mixnet server adds an average of µ = 4, 000 noise
messages to each add-friend mailbox and µ = 25, 000
noise messages to each dialing mailbox. With Laplace b
parameters of 406 and 2,183 respectively, each protocol
achieves (ε = ln 2, δ = 10−4)-differential privacy for
900 add-friend requests and 26,000 calls (e.g., 7 calls
per day for 10 years). For our experiments, we set b =
0 to reduce the variance in the results. The Vuvuzela
paper discusses the implications of differential privacy
parameters in detail.

8.2 Client performance
Deploying Alpenhorn requires the application developer
to decide how frequently to run the add-friend and dialing
rounds. The main consideration is a trade-off between la-
tency and client bandwidth: more frequent rounds reduce
latency but require clients to download mailboxes more
frequently (the rest of this section quantifies this trade-off).
We expect that Alpenhorn would be used in settings where
users do not expect an instant response to friend requests
(similar to adding a friend on Facebook), and where users
do not add new friends very often. In this setting, the
latency of the dialing protocol is more important than the
add-friend latency, since the add-friend protocol needs to
happen only once between pairs of users, and all further
attempts to communicate use the dialing protocol.

Bandwidth. We compute the latency and bandwidth re-
quirements of add-friend and dialing. The crucial parame-
ters that affect latency and bandwidth are round duration
(how long Alpenhorn waits to process the next batch of
requests for the next round), and the number of active
users, which affects the number of requests processed in a
round.

The duration of add-friend and dialing rounds are pa-
rameters to the system that can be used to adjust client
bandwidth usage. Figure 6 shows the total client-side
bandwidth requirement of the add-friend protocol as a
function of the round duration. The bandwidth is mostly
spent on downloading add-friend mailboxes. In Figure 6,
with one million users, each add-friend mailbox contains
around 12,000 friend requests from users and around
12,000 friend requests from noise (4,000 per server, on
average), for a total of 24,000 requests. At 308 bytes per
request, the add-friend mailbox is around 7.4 MB every
round. As described in §6, when the number of requests
goes up, the mixnet increases the number of mailboxes,

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 581

0.0

0.5

1.0

1.5

2.0

2.5

 0 1 2 3 4 6 8 10 12 16 20 24
 0

 1

 2

 3

 4

 5

 6
C

li
e

n
t

b
a

n
d

w
id

th
 (

K
B

/s
)

G
B

/m
o

n
th

Add friend protocol round duration (hours)

10M users
1M users

100K users

Figure 6: Required client-side bandwidth for the add-friend protocol
when varying the round duration.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 8 10
 0
 5
 10
 15
 20
 25
 30
 35
 40

C
li
e

n
t

b
a

n
d

w
id

th
 (

K
B

/s
)

G
B

/m
o

n
th

Dialing protocol round duration (minutes)

10M users
1M users

100K users

Figure 7: Required client-side bandwidth for the dialing protocol when
varying the round duration.

thus ensuring that the size of the mailbox stays roughly
constant. (With 100K users, the number of messages each
round is less than 12,000, so the single mailbox is smaller
than 7.4 MB.)

The dialing protocol analysis is shown in Figure 7.
Nearly all of the client bandwidth is spent on download-
ing the Bloom filter that is scanned for dial tokens. With
1M users and 5% active, Alpenhorn uses one Bloom filter
to encode the 125,000 received dial tokens. At 48 bits per
token, the Bloom filter is 0.75 MB each round. With 10
million users and 500K active, Alpenhorn distributes the
incoming dial tokens into 7 distinct Bloom filters (mail-
boxes). Each Bloom filter has a roughly equal amount of
noise and user data (75,000 each), so the total Bloom filter
size is 0.9 MB per user per round. If Alpenhorn uses a di-
aling round duration of 5 minutes, then the average client
bandwidth is 3 KB/s, or 7.8 GB per month (manageable
for a cellphone with occasional WiFi connectivity). With
a round duration of 5 minutes, the average end-to-end
latency for Call requests is about 2.5 minutes.

CPU. We measured the client-side CPU usage of both
protocols. Our implementation of IBE can compute 800
decryptions per second per core. Thus, to scan a mailbox
with 24,000 friend requests takes 8 seconds on a 4 core
machine. The CPU cost of dialing is tiny in comparison.
One core can compute 1 million hashes per second. Even
if a user has 1,000 friends in their keywheel (much more
than the average number of friends on Facebook [21, 40]),
and the application uses 10 intent values, the Bloom filter
can be scanned in less than a second.

Key extraction. We measured the time it takes a client
to obtain the combined identity private key for a single
round from the PKGs, with a varying number of PKGs
running in the same EC2 region as the client. With 3
PKGs, the median latency was 4.9 msec (ranging from
4.7 msec to 7.6 msec) over 100 runs. With 10 PKGs, the
median latency was 5.2 msec (ranging from 4.7 msec to
10.8 msec). This suggests that, for a client, there is almost
no cost to additional PKGs aside from the network latency
of contacting the servers.

8.3 Server performance
To evaluate whether Alpenhorn can support a large num-
ber of users, we measured the time it takes for the
servers to complete a round, varying the number of users
and servers. Specifically, we measured the latency of
AddFriend and Call requests, assuming the client sends
the requests at the optimal time just before the round
closes, and measuring time until the client downloads the
mailbox and finishes scanning all requests. Thus, our
latency measurements do not include artificial delays im-
posed by the servers to reduce bandwidth costs (in an
actual deployment, servers would be idle most of the
time, because the interval at which new rounds start is
much higher than the time it takes to complete a round, to
keep client bandwidth reasonable). We also measured the
throughput of PKG servers generating users’ IBE private
keys.

Add-friend. Figure 8 shows the median, minimum, and
maximum observed latencies as we varied the number of
users, for different numbers of servers. With 10 million
users, the median 3-server round latency is 152 seconds.
Adding more servers increases the latency due to the addi-
tional processing that each server must perform, and due
to the additional noise introduced by additional servers.

Dialing. Figure 9 shows the latency for dialing as we var-
ied the number of users. The graph shows that Alpenhorn
can support 10 million users on 3 servers with a latency
of 118 seconds. The latency increases with more servers
much as with the add-friend protocol.

PKG servers. The PKG servers in Alpenhorn have to
extract a private key for every user in every round, which
can place a lower bound on how frequently add-friend
rounds can run. In our experiments, a PKG takes 232 sec-
onds to respond to 1 million user key extraction requests
(4310 requests per second). This suggests that, even with
10 million users, each PKG can extract the keys of all
users in well under an hour.

8.4 Skewed popularity
To evaluate Alpenhorn’s performance under a skewed
workload, we measured the latency of AddFriend and
Call rounds, as above, with a varying user popularity

582 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

4 s
8 s

16 s
32 s
64 s

128 s
256 s
512 s

10K 100K 1M 10M

L
a

te
n

cy
 f

o
r

A
d

d
Fr

ie
n

d
 r

e
q

u
e

st
s

Number of online users

10 servers
5 servers
3 servers

Figure 8: Performance of Alpenhorn’s add-friend protocol when varying
the number of users online.

2 s
4 s
8 s

16 s
32 s
64 s

128 s
256 s
512 s

10K 100K 1M 10M

L
a

te
n

cy
 f

o
r

C
a

ll
 r

e
q

u
e

st
s

Number of online users

10 servers
5 servers
3 servers

Figure 9: Performance of Alpenhorn’s dialing protocol when varying
the number of users online.

0 s

10 s

20 s

30 s

40 s

 0 0.5 1 1.5 2

L
a

te
n

cy
 f

o
r

A
d

d
Fr

ie
n

d
 r

e
q

u
e

st
s

Zipf skew (s) parameter

1M users

Figure 10: Latency for Alpenhorn’s add-friend rounds when varying
the skew of the user popularity.

distribution. In particular, instead of choosing the recip-
ient of AddFriend or Call uniformly at random, in this
experiment the recipient is chosen according to a Zipf
distribution; that is, the probability of picking some user
i, from 1 to N (the number of users) is proportional to i−s.

Figure 10 show the results for the add-friend protocol
for 1M users and 3 servers. The median latency stays
constant even as user popularity becomes highly skewed
(e.g., at s = 2, the top 10 users receive 94.2% of all
requests). However, as the skew increases, the maximum
latency increases (and the minimum decreases) because
some mailboxes contain more messages (if they happen to
correspond to highly popular users), and other mailboxes
become smaller. Even for highly skewed distributions,
the effect is not dramatic because Alpenhorn mailboxes
already contain a significant amount of noise (about half
of the messages, on average) regardless of where users
choose to send messages that round. With 1M users and
s = 2, the largest mailbox is 14.95 MB and the smallest is
4.15 MB.

Dialing is less affected by skew because the client CPU
time to scan a mailbox is negligible. With 10 million
users and s = 2, the minimum and maximum latencies are
119 and 120 seconds respectively, and the minimum and
maximum mailbox sizes are 231 KB and 1.39 MB.

8.5 Application integration

To evaluate whether Alpenhorn fits with private messaging
applications, we integrated it with Vuvuzela and Pond.

Vuvuzela had its own dialing protocol for starting a
conversation (which assumed out-of-band public key dis-
tribution and did not provide forward secrecy), which we
replaced entirely with Alpenhorn. We had to change 200
lines of code; this does not include deleting all of the
code from the old dialing protocol. We had to tweak the
Vuvuzela conversation protocol, since it expected a pub-
lic key as input, rather than a shared secret (as provided
by Call). Our changes also added two new commands
to the Vuvuzela client, /addfriend and /call, which tie
directly into the Alpenhorn API. All other Vuvuzela com-
ponents remain unchanged. The resulting Vuvuzela client
that uses Alpenhorn provides the same security guaran-
tees as Vuvuzela (including differential privacy), with the
addition of forward secrecy for bootstrapping conversa-
tions (which Vuvuzela’s original dialing protocol did not
provide).

Pond also provides its own bootstrapping protocol
called PANDA [2]. PANDA assumes that pairs of users
have a shared secret, and provides a GUI for entering that
secret. We built a standalone Alpenhorn client that lets
users friend and call each other from a basic command-
line interface. The client prints the resulting shared secret
to the screen, which the users can then paste into PANDA.
This eliminates the need to generate a shared secret out-
of-band.

8.6 Cryptographic strength

In light of recent attacks on the BN-256 curve [27], which
Alpenhorn uses for IBE, it may be necessary to switch to
a different curve or IBE construction to maintain Alpen-
horn’s security guarantees in the future. Since we cannot
predict what scheme may provide the best alternative in
the future, this section analytically evaluates the impact
of such a switch on Alpenhorn’s performance.

The IBE construction impacts three aspects of Alpen-
horn’s performance: CPU cost on the PKG for generating
identity private keys, CPU cost on the client for decrypting
the add-friend mailbox, and bandwidth for downloading
the add-friend mailbox. PKG and client CPU costs would
be directly proportional to the respective CPU costs of
any new IBE construction. The bandwidth impact, on
the other hand, is a bit more subtle. Alpenhorn’s current
add-friend request is 244 bytes plus the size of an IBE
ciphertext (encrypting a symmetric key that encrypts the
rest of the request); the IBE ciphertext is 64 bytes in our
prototype. This suggests that changes to the curve or
IBE scheme used by Alpenhorn should result in linear or
sub-linear impacts on Alpenhorn’s performance.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 583

9 Discussion and Limitations
Client compromise. If an adversary compromises an
Alpenhorn client (i.e., obtains the user’s long-term signing
private key and the user’s keywheel state), the user must
generate a new long-term signing key and new keywheels
to re-establish security, as we now discuss.

Registering the new long-term signing key faces two
complications. First, the adversary can keep using the
stolen signing key, thereby preventing the user from re-
registering the same email address (since the PKGs imple-
ment a 30-day lockout policy). To address this problem,
the user should issue a deregister command to the PKGs
signed by their old key. The second issue is that, once
an account is deregistered, an adversary may be able to
register his own key under the user’s email address, since
they likely got access to the user’s email account when
they compromised the user’s machine. We address this
issue by placing the account into a 30-day lockout period
after deregistration. This way, if the user can re-establish
access to their email account within 30 days of the com-
promise (e.g., through out-of-band authentication with the
email provider), they can regain their Alpenhorn account.

Establishing new keywheels with friends requires the
user to simply re-run the add-friend protocol with each
friend. To guard against the possibility of an adversary
corrupting the list of friend long-term signing keys stored
on the user’s computer, we recommend that the user keep
an offline backup of long-term signing keys of friends,
and restore from backup to recover from a compromise.
On the other hand, we discourage users from backing up
their keywheel, since that is bad for forward secrecy.

Lost client state. If the state of an Alpenhorn client is
lost (e.g., because the user physically lost their laptop),
the user should follow the steps described above for recov-
ering from a compromised client. The only difference is
that the user no longer has access to the long-term signing
private key, so the user cannot explicitly deregister. How-
ever, the user can simply wait for the same lockout period
until re-registering their account through email validation.

DoS attacks. A malicious group of users might attempt
to cause a denial of service attack by sending friend or
dialing requests in every round (rather than cover traffic)
in order to fill mailboxes. This can in turn increase client
bandwidth, and, since Alpenhorn will create additional
mailboxes to compensate for the extra load, cause the
mixnet servers to incur a higher CPU cost to generate
noise for the extra mailboxes. To address this, Alpenhorn
servers could issue a limited number of blinded signatures
to each user every day, and reject any requests that don’t
have a valid unblinded signature. Since the signatures are
blinded, this approach would not leak metadata.

Users going offline. Alpenhorn does not assume that
users stay online all the time (Alpenhorn avoids inter-
section attacks [32] by using constant-rate cover traffic to
and from all client machines and by using noise to ensure
differential privacy of observable mailboxes). However,
Alpenhorn does assume that the user’s observable activ-
ity, which includes going online and offline, is not highly
correlated with any confidential metadata they want to
keep private. A straightforward way to achieve this is to
keep Alpenhorn running all the time, but this may not be
practical for users with mobile devices.

An example scenario that illustrates the above problem
would be two users that both close their laptops at the
same time after finishing a conversation; an adversary that
observes both of them going offline at the same time may
infer that both of them could have been talking just before.
One approach to address this that we hope to explore in
future work is to require the users to stay online for a
random length of time after finishing a conversation, and
to use differential privacy to precisely reason about what
random time intervals would be required.

10 Conclusion
Alpenhorn is the first system for establishing session keys
between pairs of users that does not require out-of-band
communication aside from knowing a user’s Alpenhorn
username (their email address), and that provides privacy
and forward secrecy for metadata, assuming that at least
one server is uncompromised. Alpenhorn achieves this
by using identity-based encryption (IBE) in a novel way
to determine another user’s public key without revealing
metadata in an anytrust setting. Alpenhorn ensures for-
ward secrecy for all data by refreshing IBE keys and by
storing client-side secrets in a keywheel. The keywheel
provides a bandwidth-efficient means for calling existing
friends and starting conversations. Together, these tech-
niques enable Alpenhorn to bootstrap communication in
messaging systems that support 10 million users.

Acknowledgments
Thanks to Tej Chajed, Chucky Ellison, Jon Gjengset, Jelle
van den Hooff, Frans Kaashoek, and Malte Schwarzkopf
for helping improve this paper, and especially thanks to
Vinod Vaikuntanathan for helping us prove the security of
Anytrust-IBE. Thanks also to the anonymous reviewers.
This work was supported by NSF awards CNS-1053143
and CNS-1413920, and by Google.

References
[1] S. Angel and S. Setty. Unobservable communication

over fully untrusted infrastructure. In Proceedings of
the 12th Symposium on Operating Systems Design
and Implementation (OSDI), Savannah, GA, Nov.
2016.

584 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[2] J. Appelbaum et al. Going dark: Phrase au-
tomated nym discovery authentication, 2013.
https://github.com/agl/pond/tree/
master/papers/panda.

[3] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly
elliptic curves of prime order. In Selected Areas in
Cryptography – SAC 2005, volume 3897 of Lecture
Notes in Computer Science, pages 319–331, 2006.

[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green,
I. Miers, E. Tromer, and M. Virza. Zerocash: De-
centralized anonymous payments from Bitcoin. In
Proceedings of the 35th IEEE Symposium on Secu-
rity and Privacy, San Jose, CA, May 2014.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] A. Boldyreva, V. Goyal, and V. Kumar. Identity-
based encryption with efficient revocation. In Pro-
ceedings of the 15th ACM Conference on Computer
and Communications Security (CCS), pages 417–
426, Alexandria, VA, Oct. 2008.

[7] D. Boneh and M. K. Franklin. Identity-based en-
cryption from the Weil pairing. In Proceedings of
the 21st Annual International Cryptology Confer-
ence (CRYPTO), Santa Barbara, CA, Aug. 2001.

[8] D. Boneh, B. Lynn, and H. Shacham. Short signa-
tures from the Weil pairing. Journal of Cryptology,
17(4):297–319, 2004.

[9] N. Borisov, I. Goldberg, and E. Brewer. Off-the-
record communication, or, why not to use PGP. In
Proceedings of the 2004 Workshop on Privacy in the
Electronic Society, Washington, DC, Oct. 2004.

[10] N. Borisov, G. Danezis, and I. Goldberg. DP5: A pri-
vate presence service. In Proceedings of the 15th Pri-
vacy Enhancing Technologies Symposium, Philadel-
phia, PA, June–July 2015.

[11] X. Boyen. Multipurpose identity-based signcryption:
A Swiss army knife for identity-based cryptography.
In Proceedings of the 23rd Annual International
Cryptology Conference (CRYPTO), Santa Barbara,
CA, Aug. 2003.

[12] X. Boyen and B. Waters. Anonymous hierarchical
identity-based encryption (without random oracles).
Cryptology ePrint Archive, Report 2006/085, June
2006.

[13] J. Brooks et al. Ricochet: Anonymous instant mes-
saging for real privacy, 2016. https://ricochet.
im.

[14] R. Canetti, S. Halevi, and J. Katz. A forward-secure
public-key encryption scheme. Journal of Cryptol-
ogy, 20(3):265–294, July 2007.

[15] D. Chaum, F. Javani, A. Kate, A. Krasnova,
J. de Ruiter, A. T. Sherman, and D. Das. cMix:
Anonymization by high-performance scalable mix-
ing. Cryptology ePrint Archive, Report 2016/008,
Jan. 2016.

[16] L. Chen, Z. Cheng, and N. P. Smart. Identity-based
key agreement protocols from pairings. http://
eprint.iacr.org/, June 2006.

[17] C. Cocks. An identity based encryption scheme
based on quadratic residues. In Proceedings of the
8th Proceedings of the 8th IMA International Con-
ference on Cryptography and Coding, Cirencester,
UK, Dec. 2001.

[18] C. Conley. Metadata: Piecing together a privacy
solution. ACLU of California, Feb. 2014. https:
//www.aclunc.org/publications/metadata-
piecing-together-privacy-solution.

[19] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Ri-
poste: An anonymous messaging system handling
millions of users. In Proceedings of the 36th IEEE
Symposium on Security and Privacy, San Jose, CA,
May 2015.

[20] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In Proceedings
of the 13th Usenix Security Symposium, pages 303–
320, San Diego, CA, Aug. 2004.

[21] Edison Research. Average number of Facebook
friends of users in the United States as of February
2014, by age group. Statista - The Statistics
Portal, Mar. 2014. https://www.statista.com/
statistics/232499/americans-who-use-
social-networking-sites-several-times-
per-day/.

[22] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feld-
man, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys. In
Proceedings of the 17th Usenix Security Symposium,
San Jose, CA, July–Aug. 2008.

[23] T. Hansen, D. Crocker, and P. Hallam-Baker. Do-
mainKeys Identified Mail (DKIM) service overview.
RFC 5585, Network Working Group, July 2009.

[24] A. Iliev and S. Smith. Privacy-enhanced credential
services. In Proceedings of the 2nd Annual NIST
PKI Research Workshop, Apr. 2003.

USENIX Association 12th USENIX Symposium on Operating Systems Design and Implementation 585

https://github.com/agl/pond/tree/master/papers/panda
https://github.com/agl/pond/tree/master/papers/panda
https://ricochet.im
https://ricochet.im
http://eprint.iacr.org/
http://eprint.iacr.org/
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.aclunc.org/publications/metadata-piecing-together-privacy-solution
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/
https://www.statista.com/statistics/232499/americans-who-use-social-networking-sites-several-times-per-day/

[25] A. Kate and I. Goldberg. Distributed private-key
generators for identity-based cryptography. In Pro-
ceedings of the 7th Conference on Security and Cryp-
tography for Networks, Sept. 2010.

[26] Keybase. Keybase, 2016. https://keybase.io/.

[27] T. Kim and R. Barbulescu. Extended tower num-
ber field sieve: A new complexity for the medium
prime case. In Proceedings of the 36th Annual Inter-
national Cryptology Conference (CRYPTO), Santa
Barbara, CA, Aug. 2016.

[28] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Rif-
fle: An efficient communication system with strong
anonymity. In Proceedings of the 16th Privacy En-
hancing Technologies Symposium, Darmstadt, Ger-
many, July 2016.

[29] A. Langley. Pond, 2016. https://github.com/
agl/pond.

[30] D. Lazar and N. Zeldovich. Alpenhorn: Boot-
strapping secure communication without leaking
metadata (extended technical report). Technical re-
port, MIT Computer Science and Artificial Intelli-
gence Laboratory, Cambridge, MA, Oct. 2016. Also
available at https://vuvuzela.io/alpenhorn-
extended.pdf.

[31] W. Lueks and I. Goldberg. Sublinear scaling for
multi-client private information retrieval. In Pro-
ceedings of the 19th International Conference on Fi-
nancial Cryptography and Data Security, Jan. 2015.

[32] N. Mathewson and R. Dingledine. Practical traf-
fic analysis: Extending and resisting statistical dis-
closure. In Proceedings of the Privacy Enhancing
Technologies Workshop, pages 17–34, May 2004.

[33] J. Mayer, P. Mutchler, and J. C. Mitchell. Evalu-
ating the privacy properties of telephone metadata.
Proceedings of the National Academy of Sciences
(PNAS), 113(20):5536–5541, 2016.

[34] M. Naehrig, R. Niederhagen, and P. Schwabe. New
software speed records for cryptographic pairings.
In Progress in Cryptology – LATINCRYPT 2010,
volume 6212 of Lecture Notes in Computer Science,
pages 109–123, 2010.

[35] Namecoin. Namecoin, 2016. https://namecoin.
info/.

[36] T. Perrin and M. Marlinspike. Double ratchet al-
gorithm, 2016. https://github.com/trevp/
double_ratchet/wiki.

[37] A. Piotrowska, J. Hayes, N. Gelernter, G. Danezis,
and A. Herzberg. AnoNotify: A private notifica-
tion service. Cryptology ePrint Archive, Report
2016/466, May 2016.

[38] A. Rusbridger. The Snowden leaks and the public.
The New York Review of Books, Nov. 2013.

[39] A. Shamir. Identity-based cryptosystems and signa-
ture schemes. In Proceedings of the 4th Annual Inter-
national Cryptology Conference (CRYPTO), Santa
Barbara, CA, Aug. 1984.

[40] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The anatomy of the Facebook social graph. CoRR,
abs/1111.4503, Nov. 2011. URL http://arxiv.
org/abs/1111.4503.

[41] J. van den Hooff, D. Lazar, M. Zaharia, and N. Zel-
dovich. Vuvuzela: Scalable private messaging re-
sistant to traffic analysis. In Proceedings of the
25th ACM Symposium on Operating Systems Princi-
ples (SOSP), Monterey, CA, Oct. 2015.

[42] WhatsApp. WhatsApp encryption overview, Apr.
2016. https://www.whatsapp.com/security/
WhatsApp-Security-Whitepaper.pdf.

[43] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and
A. Johnson. Dissent in numbers: Making strong
anonymity scale. In Proceedings of the 10th Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), Hollywood, CA, Oct. 2012.

586 12th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://keybase.io/
https://github.com/agl/pond
https://github.com/agl/pond
https://vuvuzela.io/alpenhorn-extended.pdf
https://vuvuzela.io/alpenhorn-extended.pdf
https://namecoin.info/
https://namecoin.info/
https://github.com/trevp/double_ratchet/wiki
https://github.com/trevp/double_ratchet/wiki
http://arxiv.org/abs/1111.4503
http://arxiv.org/abs/1111.4503
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

	Introduction
	Related work
	Overview
	Overall design
	Security goals
	Threat model

	Add-friend protocol
	Identity-based encryption
	Distributing trust
	Ciphertext anonymity
	Forward secrecy
	Authenticating requests
	Registering email addresses
	Computing a shared secret

	Dialing protocol
	Keywheel synchronization
	Bloom filter encoding
	Intents

	Sender anonymity
	Implementation
	Evaluation
	Experimental setup
	Client performance
	Server performance
	Skewed popularity
	Application integration
	Cryptographic strength

	Discussion and Limitations
	Conclusion

