Meri Leeworthy

Basic Integral Formulas

Here are some basic integral formulas that are essential in calculus:

  1. Power Rule for Integration: $$\int x^n , dx = \frac{x^{n+1}}{n+1} + C \quad \text{(for } n \neq -1\text{)}$$

  2. Integral of a Constant: $$ \int a , dx = ax + C $$

  3. Sum Rule: $$ \int (f(x) + g(x)) , dx = \int f(x) , dx + \int g(x) , dx $$

  4. Difference Rule: $$ \int (f(x) - g(x)) , dx = \int f(x) , dx - \int g(x) , dx $$

  5. Constant Multiple Rule: $$ \int a \cdot f(x) , dx = a \int f(x) , dx $$

  6. Integral of Exponential Functions: $$ \int e^x , dx = e^x + C $$ $$ \int a^x , dx = \frac{a^x}{\ln(a)} + C \quad \text{(for } a > 0 \text{ and } a \neq 1\text{)} $$

  7. Integral of Trigonometric Functions: $$ \int \sin(x) , dx = -\cos(x) + C $$ $$ \int \cos(x) , dx = \sin(x) + C $$ $$ \int \sec^2(x) , dx = \tan(x) + C $$ $$ \int \csc^2(x) , dx = -\cot(x) + C $$ $$ \int \sec(x) \tan(x) , dx = \sec(x) + C $$ $$ \int \csc(x) \cot(x) , dx = -\csc(x) + C $$

  8. Integral of Hyperbolic Functions: $$ \int \sinh(x) , dx = \cosh(x) + C $$ $$ \int \cosh(x) , dx = \sinh(x) + C $$

  9. Integral of the Natural Logarithm: $$ \int \ln(x) , dx = x \ln(x) - x + C $$

These formulas form the foundation for solving a wide variety of integral problems.

Monash version

Sum Rule of Integration:Β $\int(𝑓+𝑔)𝑑π‘₯=\int𝑓𝑑π‘₯+\int𝑔𝑑π‘₯$

Difference Rule of Integration:Β $\int (π‘“βˆ’π‘”)𝑑π‘₯=\int 𝑓𝑑π‘₯βˆ’\int 𝑔𝑑π‘₯$

Multiplication by ConstantΒ $\int 𝑐𝑓(π‘₯)𝑑π‘₯=𝑐\int 𝑓(π‘₯)𝑑π‘₯$.

I live and work on the land of the Wurundjeri people of the Kulin Nation. I pay respect to their elders past and present and acknowledge that sovereignty was never ceded. Always was, always will be Aboriginal land.

This site uses open source typefaces, including Sligoil by Ariel MartΓ­n PΓ©rez, and Vercetti by Filippos Fragkogiannis