Basic Integral Formulas
Here are some basic integral formulas that are essential in calculus:
-
Power Rule for Integration: $$\int x^n , dx = \frac{x^{n+1}}{n+1} + C \quad \text{(for } n \neq -1\text{)}$$
-
Integral of a Constant: $$ \int a , dx = ax + C $$
-
Sum Rule: $$ \int (f(x) + g(x)) , dx = \int f(x) , dx + \int g(x) , dx $$
-
Difference Rule: $$ \int (f(x) - g(x)) , dx = \int f(x) , dx - \int g(x) , dx $$
-
Constant Multiple Rule: $$ \int a \cdot f(x) , dx = a \int f(x) , dx $$
-
Integral of Exponential Functions: $$ \int e^x , dx = e^x + C $$ $$ \int a^x , dx = \frac{a^x}{\ln(a)} + C \quad \text{(for } a > 0 \text{ and } a \neq 1\text{)} $$
-
Integral of Trigonometric Functions: $$ \int \sin(x) , dx = -\cos(x) + C $$ $$ \int \cos(x) , dx = \sin(x) + C $$ $$ \int \sec^2(x) , dx = \tan(x) + C $$ $$ \int \csc^2(x) , dx = -\cot(x) + C $$ $$ \int \sec(x) \tan(x) , dx = \sec(x) + C $$ $$ \int \csc(x) \cot(x) , dx = -\csc(x) + C $$
-
Integral of Hyperbolic Functions: $$ \int \sinh(x) , dx = \cosh(x) + C $$ $$ \int \cosh(x) , dx = \sinh(x) + C $$
-
Integral of the Natural Logarithm: $$ \int \ln(x) , dx = x \ln(x) - x + C $$
These formulas form the foundation for solving a wide variety of integral problems.
Monash version
- $\int 1ππ₯=π₯+πΆ$
- $\int πππ₯=ππ₯+πΆ$
- $\int π₯πππ₯=((π₯π+1)/(π+1))+πΆ;πβ 1$
- $\int sin(π₯)ππ₯=βcos(π₯)+πΆ$
- $\int cos(π₯)ππ₯=sin(π₯)+πΆ$
- $\int sec^2(π₯)ππ₯=tan(π₯)+πΆ$
- $\int csc^2(π₯)ππ₯=βcot(π₯)+πΆ$
- $\int sec(π₯(tan(π₯))ππ₯=secπ₯+πΆ$
- $\int cscπ₯(cotπ₯)ππ₯=βcscπ₯+πΆ$
- $\int (1/π₯)ππ₯=ln|π₯|+πΆ$
- $\int ππ₯ππ₯=ππ₯+πΆ$
- $\int ππ₯ππ₯=(ππ₯/lnπ)+πΆ;π>0,πβ 1$
Sum Rule of Integration:Β $\int(π+π)ππ₯=\intπππ₯+\intπππ₯$
Difference Rule of Integration:Β $\int (πβπ)ππ₯=\int πππ₯β\int πππ₯$
Multiplication by ConstantΒ $\int ππ(π₯)ππ₯=π\int π(π₯)ππ₯$.