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Abstract
Collaborative text editing algorithms allow several users to
concurrently modify a text file, and automatically merge
concurrent edits into a consistent state. Existing algorithms
fall in two categories: Operational Transformation (OT) al-
gorithms are slow to merge files that have diverged sub-
stantially due to offline editing; CRDTs are slow to load and
consume a lot of memory. We introduce Eg-walker, a col-
laboration algorithm for text that avoids these weaknesses.
Compared to existing CRDTs, it consumes an order of magni-
tude less memory in the steady state, and loading a document
from disk is orders of magnitude faster. Compared to OT,
merging long-running branches is orders of magnitude faster.
In the worst case, the merging performance of Eg-walker is
comparable with existing CRDT algorithms. Eg-walker can
be used everywhere CRDTs are used, including peer-to-peer
systems without a central server. By offering performance
that is competitive with centralised algorithms, our result
paves the way towards the widespread adoption of peer-to-
peer collaboration software.

CCS Concepts: • Applied computing→ Text editing; •
Human-centered computing→ Computer supported
cooperative work; • Information systems→ Asynchro-
nous editors; • Computing methodologies→ Distributed
algorithms.

Keywords: collaborative text editing, CRDTs, operational
transformation, strong eventual consistency
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User 1: User 2:
Helo

Hello

Hello!

Helo

Helo!

Hello!

Insert (3, “l”) Insert (4, “!”)

Insert (5, “!”) Insert (3, “l”)

Figure 1. Two concurrent insertions into a text document.

1 Introduction
Real-time collaboration has become an essential feature for
many types of software, including document editors such
as Google Docs, Microsoft Word, or Overleaf, and graphics
software such as Figma. In such software, each user’s device
locally maintains a copy of the shared file (e.g. in a tab of
their web browser). A user’s edits are immediately applied to
their own local copy, without waiting for a network round-
trip, so that the user interface is responsive regardless of
network latency. Different users may therefore make edits
concurrently; the software must merge such concurrent edits
in a way that maintains the integrity of the document, and
ensures that all devices converge to the same state.

For example, in Figure 1, two users initially have the same
document “Helo”. User 1 inserts a second letter “l” at index
3, while concurrently user 2 inserts an exclamation mark
at index 4. When user 2 receives the operation Insert (3, “l”)
they can apply it to obtain “Hello!”, but when user 1 receives
Insert (4, “!”) they cannot apply that operation as-is, since
that would result in the state “Hell!o”, which would be incon-
sistent with the other user’s state and the intended insertion
position. Due to the concurrent insertion at an earlier index,
user 1 must insert the exclamation mark at index 5.
One way of solving this problem is to use Operational

Transformation (OT): when user 1 receives Insert (4, “!”) that
operation is transformed with regard to the concurrent in-
sertion at index 3, which increments the index at which the
exclamation mark is inserted. OT is an old and widely-used
technique: it was introduced in 1989 [18], and the OT algo-
rithm Jupiter [44] is used in Google Docs [17].
OT is simple and fast in the case of Figure 1, where each

user performed only one operation since the last version
they had in common. In general, if the users each performed
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𝑛 operations since their last common version, merging their
states using OT has a cost of at least𝑂 (𝑛2), since each of one
user’s operations must be transformed with respect to all
of the other user’s operations. Some OT algorithms’ merge
complexity is cubic or even slower [39, 52, 57]. This is accept-
able for online collaboration where 𝑛 is typically small, but
for larger 𝑛 an algorithm with complexity𝑂 (𝑛2) can become
impracticably slow. In Section 4 we show a real-life example
document that takes one hour to merge using OT.
Larger divergence occurs if users may edit a document

offline, or if the software supports explicit branching and
merging workflows. In version control systems like Git, used
mostly for software development, offline working and ex-
plicit branching are already the norm. Recent research indi-
cates that such workflows would also be valuable for writing
prose [40, 42], but OT-based collaborative editors struggle to
offer such features because of the cost of merging substan-
tially diverged branches.
Conflict-free Replicated Data Types (CRDTs) have been

proposed as an alternative to OT. The first CRDT for collab-
orative text editing appeared in 2006 [47], and over a dozen
text CRDTs have been published since [35]. These algorithms
work by maintaining additional metadata: they give each
character a unique identifier, and use those IDs instead of
integer indexes to identify the position of insertions and
deletions. This avoids having to transform operations, since
IDs are not affected by concurrent operations.

Unfortunately, these IDs need to be loaded from disk when
a document is opened, and held in memory while a docu-
ment is being edited. Some CRDT algorithms also need to
retain IDs of deleted characters (tombstones). Early CRDT
algorithms were very inefficient, using hundreds of bytes of
memory for each character of text, making them impractical
for long documents. Recent CRDT implementations have
reduced this overhead considerably, but as we show in Sec-
tion 4, even the best CRDTs available today use more than
10 times as much memory as OT to view and edit a docu-
ment. For this reason, popular apps like Google Docs [17],
Microsoft Office, and Overleaf [48] use OT. Existing algo-
rithms therefore present a trade-off: either use OT and accept
that offline editing and long-running branches are slow, or
pick a CRDT and accept a much higher memory use.

In this paper we propose Event Graph Walker (Eg-walker),
a collaborative editing algorithm that overcomes this trade-
off. Like OT, Eg-walker uses integer indexes to identify inser-
tion and deletion positions, and transforms those indexes to
merge concurrent operations. When two users concurrently
perform 𝑛 operations each, Eg-walker can merge them at a
cost of 𝑂 (𝑛 log𝑛), much faster than OT’s cost of 𝑂 (𝑛2) or
worse. The example document that takes 1 hour to merge
using OT is merged in just 24 ms using Eg-walker (Figure 8).
Eg-walker merges concurrent edits using a CRDT algo-

rithm we designed. Unlike existing algorithms, we invoke
the CRDT only to perform merges of concurrent operations,

and we discard its state as soon as the merge is complete. We
never write the CRDT state to disk and never send it over the
network. While a document is being edited, we only hold the
document text in memory, but no CRDT metadata. Most of
the time, Eg-walker therefore uses 1–2 orders of magnitude
less memory than the best CRDTs. During merging, when
Eg-walker temporarily uses more memory, its peak memory
use is comparable to the best known CRDT implementations.

Eg-walker assumes no central server, so it can be used over
a peer-to-peer network. Although all existing CRDTs and a
few OT algorithms can be used peer-to-peer, most of them
have poor performance compared to the centralised OT com-
monly used in production software. In contrast, Eg-walker’s
performance matches or surpasses that of centralised algo-
rithms. It therefore paves the way towards more collabo-
ration software working peer-to-peer, for example in envi-
ronments where co-located devices can communicate via
local radio links, but not reach the Internet or any cloud ser-
vices. This setting is important e.g. for devices onboard the
same aircraft [50], in a military context [19], or for scientists
conducting fieldwork in remote locations [15].
This paper focuses on collaborative editing of plain text

files.We believe that our approach can be generalised to other
file types such as rich text, spreadsheets, graphics, presenta-
tions, CAD drawings, and more in the future. More generally,
Eg-walker provides a framework for efficient coordination-
free distributed systems, in which nodes can always make
progress independently, but converge eventually [29].

This paper makes the following contributions:

• We introduce Eg-walker, a hybrid CRDT/OT algorithm
for text that is faster and has a vastly smaller memory
footprint than existing CRDTs (Section 3).

• Since there is no established benchmark for collabo-
rative text editing, we are also publishing a suite of
editing traces of text files for benchmarking. They are
derived from real documents and demonstrate various
patterns of sequential and concurrent editing.

• In Section 4 we use those editing traces to evaluate
the performance of our implementation of Eg-walker,
comparing it to selected CRDTs and an OT implemen-
tation. Wemeasure CPU time to load a document, CPU
time to merge edits from a remote replica, memory
usage, and file size. Eg-walker improves the state of
the art by orders of magnitude in the best cases, and
is only slightly slower in the worst cases.

• We prove the correctness of Eg-walker in Appendix C.

2 Background
We consider a collaborative plain text editor whose state
is a linear sequence of characters, which may be edited by
inserting or deleting characters at any position. Such an
edit is captured as an operation; the operation Insert (𝑖, 𝑐)
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inserts character 𝑐 at index 𝑖 , and Delete(𝑖) deletes the char-
acter at index 𝑖 (indexes are zero-based). Our implementation
compresses runs of consecutive insertions or deletions, but
for simplicity we describe the algorithm in terms of single-
character operations.

2.1 System model
Each device on which a user edits a document is a replica, and
each replica stores the full editing history of the document.
When a user makes an insertion or deletion, that operation
is immediately applied to the user’s local replica, and then
asynchronously sent over the network to any other replicas
that have a copy of the same document. Users can also edit
their local copy while offline; the corresponding operations
are then enqueued and sent when the device is next online.

Our algorithm assumes a reliable broadcast protocol that
detects and retransmits lost messages, but makes no other
assumptions about the network. For example, a relay server
could store and forward messages from one replica to the
others, or replicas could use a peer-to-peer gossip proto-
col. We make no timing assumptions and tolerate arbitrary
network delay, but we assume replicas are non-Byzantine.

Our algorithm ensures convergence: any two replicas that
have seen the same operations have the same document state
(i.e., a text consisting of the same sequence of characters),
even if the operations arrived in a different order at each
replica. If the underlying broadcast protocol ensures that ev-
ery non-crashed replica eventually receives every operation,
the algorithm achieves strong eventual consistency [53].

2.2 Event graphs
We represent the editing history of a document as an event
graph: a directed acyclic graph (DAG) in which every node is
an event consisting of an operation (insert/delete a character),
a unique ID, and the set of IDs of its parent events. When
𝑎 is a parent of 𝑏, we also say 𝑏 is a child of 𝑎, and the
graph contains an edge from 𝑎 to 𝑏. We construct events
such that the graph is transitively reduced (i.e., it contains
no redundant edges). When there is a directed path from 𝑎

to 𝑏 we say that 𝑎 happened before 𝑏, and write 𝑎 → 𝑏 as
per Lamport [38]. The→ relation is a strict partial order. We
say that events 𝑎 and 𝑏 are concurrent, written 𝑎 ∥ 𝑏, if both
events are in the graph, 𝑎 ≠ 𝑏, and neither happened before
the other: 𝑎 ↛ 𝑏 ∧ 𝑏 ↛ 𝑎.
The frontier is the set of events with no children. When-

ever a user performs an operation, a new event containing
that operation is added to the graph, and the previous fron-
tier in the replica’s local copy of the graph becomes the new
event’s parents. The new event is then broadcast over the
network, and each replica adds it to its copy of the graph. If
any parents are missing (i.e., a parent ID in the event does
not resolve to a known event), the replica waits for them to
arrive before adding them to the graph; the result is a simple
causal broadcast protocol [11, 13]. Two replicas can merge

𝑒1 : Insert (0, “H”)

𝑒2 : Insert (1, “e”)

𝑒3 : Insert (2, “l”)

𝑒4 : Insert (3, “o”)

𝑒5 : Insert (3, “l”) 𝑒6 : Insert (4, “!”)

Figure 2. The event graph corresponding to Figure 1.

their event graphs by taking the union of their sets of events.
Events in the graph are immutable; they always represents
the operation as originally generated, and not as a result
of any transformation. The graph grows monotonically (we
never remove events), and a new event is always a child of
existing events (we never add a parent to an existing event).

For example, Figure 2 shows the event graph correspond-
ing to Figure 1. The events 𝑒5 and 𝑒6 are concurrent, and the
frontier of this graph is the set of events {𝑒5, 𝑒6}.
The event graph for a substantial document, such as a

research paper, may contain hundreds of thousands of events.
It can nevertheless be stored in a very compact form by
exploiting the typical editing patterns of humans writing
text: characters tend to be inserted or deleted in consecutive
runs. Many portions of a typical event graph are linear, with
each event having one parent and one child. We describe the
storage format in more detail in Section 3.8.

2.3 Document versions
Let 𝐺 be an event graph, represented as a set of events. Due
to convergence, any two replicas that have the same set
of events must be in the same state. Therefore, the docu-
ment state (sequence of characters) resulting from𝐺 must
be replay(𝐺), where replay is some pure (deterministic and
non-mutating) function. In principle, any pure function of
the set of events results in convergence, although a replay
function that is useful for text editing must satisfy additional
criteria (see Section 3.1).

Consider the event Delete(𝑖), which deletes the character
at position 𝑖 in the document. In order to correctly interpret
this event, we need to determine which character was at
index 𝑖 at the time when the operation was generated.

More generally, let 𝑒𝑖 be some event. The document state
when 𝑒𝑖 was generated must be replay(𝐺𝑖 ), where 𝐺𝑖 is the
set of events that were known to the generating replica at
the time when 𝑒𝑖 was generated (not including 𝑒𝑖 itself). By
definition, the parents of 𝑒𝑖 are the frontier of 𝐺𝑖 , and thus
𝐺𝑖 is the set of all events that happened before 𝑒𝑖 , i.e., 𝑒𝑖 ’s
parents and all of their ancestors. Therefore, the parents of 𝑒𝑖
unambiguously define the document state in which 𝑒𝑖 must
be interpreted.
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To formalise this, given an event graph (set of events) 𝐺 ,
we define the version of 𝐺 to be its frontier set:

Version(𝐺) = {𝑒1 ∈ 𝐺 | �𝑒2 ∈ 𝐺 : 𝑒1 → 𝑒2}

Given some version 𝑉 , the corresponding set of events
can be reconstructed as follows:

Events(𝑉 ) = 𝑉 ∪ {𝑒1 | ∃𝑒2 ∈ 𝑉 : 𝑒1 → 𝑒2}

Since an event graph grows only by adding events that
are concurrent to or children of existing events (we never
change the parents of an existing event), there is a one-to-
one correspondence between an event graph and its version.
For all valid event graphs 𝐺 , Events(Version(𝐺)) = 𝐺 .

The set of parents of an event in the graph is the version
of the document in which that operation must be interpreted.
The version can hence be seen as a logical clock, describing
the point in time at which a replica knows about the exact
set of events in 𝐺 . Even if the event graph is large and there
are many collaborators, a version rarely consists of more
than two events in practice: a version with 𝑛 events occurs
only if 𝑛 mutually concurrent events are merged with no
new operations being generated in the intervening time.

2.4 Replaying editing history
Collaborative editing algorithms are usually defined in terms
of sending and receiving messages over a network. The
abstraction of an event graph allows us to reframe these
algorithms in a simpler way: a collaborative text editing
algorithm is a pure function replay(𝐺) of an event graph
𝐺 . This function can use the parent-child relationships to
partially order events, but concurrent events could be pro-
cessed in any order. This allows us to separate the process of
replicating the event graph from the algorithm that ensures
convergence. In fact, this is how pure operation-based CRDTs
[9] are formulated, as discussed in Section 5.
In addition to determining the document state from an

entire event graph, we need an incremental update function.
Say we have an existing event graph 𝐺 and corresponding
document state doc = replay(𝐺). Then an event 𝑒 from a
remote replica is added to the graph. We could rerun the
function to obtain doc′ = replay(𝐺 ∪ {𝑒}), but it would be
inefficient to process the entire graph again. Instead, we need
to efficiently compute the operation to apply to doc in order
to obtain doc′. For text documents, this incremental update is
also described as an insertion or deletion at a particular index;
however, the index may differ from that in the original event
due to the effects of concurrent operations, and a deletion
may turn into a no-op if the same character has also been
deleted by a concurrent operation.

Both OT and CRDT algorithms focus on this incremental
update. If none of the events in 𝐺 are concurrent with 𝑒 , OT
is straightforward: the incremental update is identical to the
operation in 𝑒 , as no transformation takes place. If there is

𝑒A1

𝑒A2

𝑒A3

𝑒A4

𝑒A5

𝑒A6

𝑒B1

𝑒B2

𝑒B3

𝑒B4

𝑒C1

𝑒C2

𝑒C3

𝑒A1

𝑒A2

𝑒A3

𝑒A4

𝑒B1

𝑒B2

𝑒B3

𝑒B4

𝑒C1

𝑒C2

𝑒C3

𝑒A5

𝑒A6

Figure 3.An event graph (left) and one possible topologically
sorted order of that graph (right).

concurrency, OTmust transform each new event with regard
to each existing event that is concurrent to it.
In CRDTs, each event is first translated into operations

that use unique IDs instead of indexes, and then these oper-
ations are applied to a data structure that reflects all of the
operations seen so far (both concurrent operations and those
that happened before). In order to update the text editor,
these updates to the CRDT’s internal structure need to be
translated back into index-based insertions and deletions.
Many CRDT papers elide this translation from unique IDs
back to indexes, but it is important for practical applications.
Regardless of whether the OT or the CRDT approach is

used, a collaborative editing algorithm can be boiled down to
an incremental update to an event graph: given an event to
be added to an existing event graph, return the (index-based)
operation that must be applied to the current document state
so that the resulting document is identical to replaying the
entire event graph including the new event.

2.5 Implementing OT using a CRDT
One way of implementing such a replay algorithm would
be to simulate a network of CRDT replicas in a single pro-
cess. For each branch in the event graph there is a separate
simulated replica, which takes operations in their original
index-based form and generates a corresponding ID-based
CRDT operation. Another simulated replica receives every
operation generated by the other replicas and applies them
in some topologically sorted order, as illustrated in Figure 3.

For example, the history in Figure 3 could be replayed us-
ing one simulated replica for 𝑒A1...A6, a second for 𝑒B1...B4, and
a third for 𝑒C1...C3. Every time an event’s parent is an event
generated on another simulated replica, the corresponding
network communication is simulated, and the remote op-
erations are merged using a CRDT algorithm. For example,
before the replica for 𝑒B1...B4 can generate 𝑒B3 it must first
merge 𝑒A2 and 𝑒A3. Each simulated replica thus tracks the
document version in which the indexes of insertions and
deletions should be interpreted. The simulated replica that
applies all operations then converts the ID-based operation

4
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back into an index based on its document version. This index-
based operation then allows an incremental update of the
document state.
The process of translating an index-based operation into

an ID-based one on one simulated replica, and translating it
back into an index-based operation on another, is effectively
an operational transformation algorithm: it updates the index
to reflect the effects of concurrent operations (which have
been applied to the second simulated replica but not the
first). However, the algorithm is fairly slow because it incurs
the overhead of updating multiple simulated replicas and
running the CRDT algorithm even at times when there is no
concurrency in the event graph. It also uses a lot of memory
because it needs a separate copy of the CRDT state for every
concurrent branch in the event graph.
Our Eg-walker algorithm, described in the next section,

modifies this approach to use only two simulated replicas:
one on which operations are generated, and the other on
which all operations are applied (and in fact, both are stored
in the same data structure). To deal with event graphs that
are not totally ordered, the algorithm allows events on one
branch to be retreated when switching to another branch, and
advanced again when those branches are merged. Retreating
an event updates the replica state to behave as if that event
had not yet happened, and advancing makes the event take
effect again.
For example, in Figure 3, after applying 𝑒A4 we would

retreat 𝑒A4, 𝑒A3, and 𝑒A2 before applying 𝑒B1, since those
events are concurrent with 𝑒B1. Before applying 𝑒B3 wewould
advance 𝑒A2 and 𝑒A3 again, since they are ancestors of 𝑒B3.
Retreating and advancing takes some additional CPU time on
highly concurrent event graphs, but as we show in Section 4,
the optimisations this approach enables result in excellent
performance overall.

3 The Event Graph Walker algorithm
Eg-walker is a collaborative text editing algorithm based on
the idea of event graph replay. The algorithm builds on a
replication layer that ensures that whenever a replica adds
an event to the graph, all non-crashed replicas eventually
receive it. The state of each replica consists of three parts:

1. Event graph: Each replica stores a copy of the event
graph on disk, in a format described in Section 3.8.

2. Document state: The current sequence of characters
in the document with no further metadata. On disk
this is simply a plain text file; in memory it may be
represented as a rope [12], piece table [41], or similar
structure to support efficient insertions and deletions.

3. Internal state: A temporary CRDT structure that
Eg-walker uses to merge concurrent edits. It is not
persisted or replicated, and it is discarded when the
algorithm finishes running.

Eg-walker can reconstruct the document state by replay-
ing the entire event graph. It first performs a topological sort,
as illustrated in Figure 3. Then each event is transformed so
that the transformed insertions and deletions can be applied
in topologically sorted order, starting with an empty doc-
ument, to obtain the document state. In Git parlance, this
process “rebases” a DAG of operations into a linear operation
history with the same effect. The input of the algorithm is
the event graph, and the output is this topologically sorted
sequence of transformed operations. While OT transforms
one operation with respect to one other, Eg-walker uses the
internal state to transform sets of operations efficiently.
In graphs with concurrent operations there are multiple

possible sort orders. Eg-walker guarantees that the final
document state is the same, regardless which of these orders
is chosen. However, the choice of sort order may affect the
performance of the algorithm, as discussed in Section 3.7.
For example, the graph in Figure 2 has two possible sort

orders; Eg-walker either first inserts “l” at index 3 and then
“!” at index 5 (like User 1 in Figure 1), or it first inserts “!” at
index 4 followed by “l” at index 3 (like User 2 in Figure 1).
The final document state is “Hello!” either way.

Event graph replay easily extends to incremental updates
for real-time collaboration: when a new event is added to the
graph, it becomes the next element of the topologically sorted
sequence. We can transform each new event in the same way
as during replay, and apply the transformed operation to the
current document state.

3.1 Characteristics of Eg-walker
Eg-walker ensures that the resulting document state is consis-
tent with Attiya et al.’s strong list specification [8] (in essence,
replicas converge to the same state and apply operations in
the right place), and it is maximally non-interleaving [60]
(i.e., concurrent sequences of insertions at the same position
are placed one after another, and not interleaved).

When generating new events, or when adding an event to
the graph that happened after all existing events, Eg-walker
only needs the current document state. Most of the time,
the event graph can thus remain on disk without using any
space in memory or any CPU time, and the internal state can
be discarded entirely. The event graph and internal state are
only required when handling concurrency, and even then
we only have to replay the portion of the graph since the
last ancestor that the concurrent operations had in common.
In portions of the event graph that have no concurrency
(which, in many editing histories, is the vast majority of
events), events do not need to be transformed at all.

In contrast, existing CRDTs require every replica to persist
the internal state and send it over the network. They also
require that state to be loaded into memory to generate and
receive operations, even when there is no concurrency. This
uses several times more memory and makes documents slow
to load.

5
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OT algorithms avoid this internal state; similarly to Eg-
walker, they only need to persist the latest document state
and the history of operations that are concurrent to opera-
tions that may arrive in the future. In both Eg-walker and OT,
the event graph can be discarded if we know that no event
we may receive in the future will be concurrent with any ex-
isting event. However, OT algorithms are very slow to merge
long-running branches (see Section 4). Eg-walker handles
arbitrary event DAGs, whereas some OT algorithms are only
able to handle restricted forms of event graphs (server-based
OT corresponds to event graphs with one main branch rep-
resenting the server’s view; all other branches may merge
to and from the main branch, but not with each other).

3.2 Walking the event graph
For the sake of clarity we first explain a simplified version
of Eg-walker that replays the entire event graph without
discarding its internal state along the way. This approach
incurs some CRDT overhead even for non-concurrent oper-
ations. We give pseudocode for this simplified algorithm in
Appendix B. In Section 3.6 we show how the algorithm can
be optimised to replay only a part of the event graph.

First, we topologically sort the event graph in a way that
keeps events on the same branch consecutive as much as pos-
sible: for example, in Figure 3 we first visit 𝑒A1 . . . 𝑒A4, then
𝑒B1 . . . 𝑒B4. We avoid alternating between branches, such as
𝑒A1, 𝑒B1, 𝑒A2, 𝑒B2 . . . , even though that would also be a valid
topological sort. For this we use a standard textbook algo-
rithm [16]: perform a depth-first traversal starting from the
oldest event, and build up the topologically sorted list in
the order that events are visited. When a node has multi-
ple children in the graph, we choose their order based on
a heuristic so that branches with fewer events tend to ap-
pear before branches with more events in the sorted order;
this can improve performance (see Section 3.7) but is not
essential. We estimate the size of a branch by counting the
number of events that happened after each event.
The algorithm then processes the events one at a time

in topologically sorted order, updating the internal state
and outputting a transformed operation for each event. The
internal state simultaneously captures the document at two
versions: the version in which an event was generated (which
we call the prepare version), and the version in which all
events seen so far have been applied (which we call the effect
version). These correspond to the two simulated replicas
mentioned in Section 2.5. If the prepare and effect versions
are the same, the transformed operation is identical to the
original one. In general, the prepare version represents a
subset of the events of the effect version.
The internal state can be updated with three methods,

each of which takes an event as argument:

• apply(𝑒) updates the prepare version and the effect
version to include 𝑒 , assuming that the current prepare

𝑒1 : Insert (0, “h”)

𝑒2 : Insert (1, “i”)

𝑒3 : Insert (0, “H”)

𝑒4 : Delete(1)

𝑒5 : Delete(1)

𝑒6 : Insert (1, “e”)

𝑒7 : Insert (2, “y”)

𝑒8 : Insert (3, “!”)

Figure 4. An event graph. Starting with document “hi”, one
user changes “hi” to “hey”, while concurrently another user
capitalises the “H”. After merging to the state “Hey”, one of
them appends an exclamation mark to produce “Hey!”.

version equals 𝑒.parents, and that 𝑒 has not yet been
applied. This method interprets 𝑒 in the context of the
prepare version, and outputs the operation represent-
ing how the effect version has been updated.

• retreat(𝑒) updates the prepare version to remove 𝑒 ,
assuming the prepare version previously included 𝑒 .

• advance(𝑒) updates the prepare version to add 𝑒 , as-
suming that the prepare version previously did not
include 𝑒 , but the effect version did.

The effect version only moves forwards in time (through
apply), whereas the prepare version can move both forwards
and backwards. Consider the example in Figure 4, and as-
sume that the events 𝑒1 . . . 𝑒8 are traversed in order of their
subscript. These events can be processed as follows:

1. Start in the empty state, then call apply(𝑒1), apply(𝑒2),
apply(𝑒3), and apply(𝑒4). This is valid because each
event’s parent version is the previously applied event.

2. Before we can apply 𝑒5 we must rewind the prepare
version to be {𝑒2}, which is the parent of 𝑒5. We can
do this by calling retreat(𝑒4) and retreat(𝑒3).

3. Now we can call apply(𝑒5), apply(𝑒6), and apply(𝑒7).
4. The parents of 𝑒8 are {𝑒4, 𝑒7}; before we can apply 𝑒8

we must therefore add 𝑒3 and 𝑒4 to the prepare state
again by calling advance(𝑒3) and advance(𝑒4). We do
not retreat 𝑒5...7 because 𝑒3 and 𝑒4 have already been
applied in Step 1; now we are advancing 𝑒3 and 𝑒4,
which does not require retreating concurrent events.

5. Finally, we can call apply(𝑒8).
In complex event graphs such as the one in Figure 3 the

same event may have to be retreated and advanced several
times, but we can process arbitrary DAGs this way. In general,
before applying the next event 𝑒 in topologically sorted order,
compute 𝐺old = Events(𝑉𝑝 ) where 𝑉𝑝 is the current prepare
version, and𝐺new = Events(𝑒.parents). We then call retreat
on each event in 𝐺old − 𝐺new (in reverse topological sort
order), and call advance on each event in 𝐺new − 𝐺old (in
topological sort order) before calling apply(𝑒).
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The following algorithm efficiently computes the events to
retreat and advance when moving the prepare version from
𝑉𝑝 to 𝑉 ′

𝑝 . For each event in 𝑉𝑝 and 𝑉 ′
𝑝 we insert the index

of that event in the topological sort order into a priority
queue, along with a tag indicating whether the event is in
the old or the new prepare version. We then repeatedly pop
the event with the greatest index off the priority queue, and
enqueue the indexes of its parents along with the same tag.
We stop the traversal when all entries in the priority queue
are common ancestors of both 𝑉𝑝 and 𝑉 ′

𝑝 . Any events that
were traversed from only one of the versions need to be
retreated or advanced respectively.

3.3 Representing prepare and effect versions
The internal state implements the apply, retreat, and advance
methods by maintaining a CRDT data structure. This struc-
ture consists of a linear sequence of records, one per char-
acter in the document, including tombstones for deleted
characters. Runs of characters with consecutive IDs and the
same properties can be run-length encoded to save mem-
ory. A record is inserted into this sequence by apply(𝑒𝑖 )
for an insertion event 𝑒𝑖 . Subsequent deletion events and
retreat/advance calls may modify properties of the record,
but records in the sequence are not removed or reordered
once they have been inserted.

When the event graph contains concurrent insertions, we
use a CRDT to ensure that all replicas place the records in this
sequence in the same order, regardless of the order in which
the event graph is traversed. For example, RGA [52] or YATA
[45] could be used for this purpose. Our implementation
of Eg-walker uses a variant of the Yjs algorithm [30], itself
based on YATA, that we conjecture to be maximally non-
interleaving. We leave a detailed analysis of this algorithm
to future work, since it is not core to this paper.

Each record in this sequence contains:
• the ID of the event that inserted the character;
• 𝑠𝑝 ∈ {NotInsertedYet, Ins, Del 1, Del 2, . . . }, the
character’s state in the prepare version;

• 𝑠𝑒 ∈ {Ins, Del}, the state in the effect version;
• and any other fields required by the CRDT to deter-
mine the order of concurrent insertions.

The rules for updating 𝑠𝑝 and 𝑠𝑒 are:
• When a record is first inserted by apply(𝑒𝑖 ) with an
insertion event 𝑒𝑖 , it is initialised with 𝑠𝑝 = 𝑠𝑒 = Ins.

• If apply(𝑒𝑑 ) is called with a deletion event 𝑒𝑑 , we set
𝑠𝑒 = Del in the record representing the deleted char-
acter. In the same record, if 𝑠𝑝 = Ins we update it to
Del 1, and if 𝑠𝑝 = Del 𝑛 it advances to Del(𝑛 + 1), as
shown in Figure 5.

• If retreat(𝑒𝑖 ) is called with insertion event 𝑒𝑖 , we must
have 𝑠𝑝 = Ins in the record affected by the event, and
we update it to 𝑠𝑝 = NotInsertedYet. Conversely,
advance(𝑒𝑖 ) moves 𝑠𝑝 from NotInsertedYet to Ins.

NIY Ins Del 1 Del 2 · · ·

Insertadvance: Delete Delete Delete

Insertretreat: Delete Delete Delete

Figure 5. State machine for internal state variable 𝑠𝑝 .

“H” “h” “i”
id : 3 id : 1 id : 2
𝑠𝑝 : Ins 𝑠𝑝 : Del 1 𝑠𝑝 : Ins
𝑠𝑒 : Ins 𝑠𝑒 : Del 𝑠𝑒 : Ins

“H” “h” “i”
id : 3 id : 1 id : 2
𝑠𝑝 : NYI 𝑠𝑝 : Ins 𝑠𝑝 : Ins
𝑠𝑒 : Ins 𝑠𝑒 : Del 𝑠𝑒 : Ins

retreat(𝑒4 )
retreat(𝑒3 )

Figure 6. Left: the internal state after applying 𝑒1...𝑒4 from
Figure 4. Right: after retreat(𝑒4) and retreat(𝑒3), the prepare
state is updated to mark “H” as NotInsertedYet, and the
deletion of “h” is undone. The effect state is unchanged.

“H” “h” “e” “y” “!” “i”
id : 3 id : 1 id : 6 id : 7 id : 8 id : 2
𝑠𝑝 : Ins 𝑠𝑝 : Del 1 𝑠𝑝 : Ins 𝑠𝑝 : Ins 𝑠𝑝 : Ins 𝑠𝑝 : Del 1
𝑠𝑒 : Ins 𝑠𝑒 : Del 𝑠𝑒 : Ins 𝑠𝑒 : Ins 𝑠𝑒 : Ins 𝑠𝑒 : Del

Figure 7. The internal Eg-walker state after replaying all of
the events in Figure 4.

• If retreat(𝑒𝑑 ) is called with a deletion event 𝑒𝑑 , we
must have 𝑠𝑝 = Del 𝑛 in the affected record, and we
update it to Del(𝑛 − 1) if 𝑛 > 1, or to Ins if 𝑛 = 1.
Calling advance(𝑒𝑑 ) performs the opposite.

As a result, 𝑠𝑝 and 𝑠𝑒 are Ins if the character is visible
(inserted but not deleted) in the prepare and effect version
respectively; 𝑠𝑝 = Del 𝑛 indicates that the character has been
deleted by 𝑛 concurrent delete events in the prepare version;
and 𝑠𝑝 = NotInsertedYet indicates that the insertion of
the character has been retreated in the prepare version. 𝑠𝑒
does not count the number of deletions and does not have a
NotInsertedYet state since we never remove the effect of
an operation from the effect version.

For example, Figure 6 shows the internal state after apply-
ing 𝑒1 . . . 𝑒4 from Figure 4, and how that state is updated by
retreating 𝑒4 and 𝑒3 before 𝑒5 is applied. In the effect state,
the lowercase “h” is marked as deleted, while the uppercase
“H” and the “i” are visible. In the prepare state, by retreating
𝑒4 and 𝑒3 the “H” is marked as NotInsertedYet, and the
deletion of “h” is undone (𝑠𝑝 = Ins).
Figure 7 shows the state after replaying all of the events

in Figure 4: “i” is also deleted, the characters “e” and “y” are
inserted immediately after the “h”, 𝑒3 and 𝑒4 are advanced
again, and finally “!” is inserted after the “y”. The figures in-
clude the character for the sake of readability, but Eg-walker
actually does not store text content in its internal state.
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3.4 Mapping indexes to character IDs
In the event graph, insertion and deletion operations specify
the index at which they apply. In order to update Eg-walker’s
internal state, we need to map these indexes to the correct
record in the sequence, based on the prepare state 𝑠𝑝 . To
produce the transformed operations, we need to map the
positions of these internal records back to indexes again –
this time based on the effect state 𝑠𝑒 .
A simple but inefficient algorithm would be: to apply a

Delete(𝑖) operation we iterate over the sequence of records
and pick the 𝑖th record with a prepare state of 𝑠𝑝 = Ins (i.e.,
the 𝑖th among the characters that are visible in the prepare
state, which is the document state in which the operation
should be interpreted). Similarly, to apply Insert (𝑖, 𝑐) we skip
over 𝑖 − 1 records with 𝑠𝑝 = Ins and insert the new record
after the last skipped record (if there have been concurrent
insertions at the same position, wemay also need to skip over
some records with 𝑠𝑝 = NotInsertedYet, as determined by
the list CRDT’s insertion ordering).

To reduce the cost of this algorithm from𝑂 (𝑛) to𝑂 (log𝑛),
where 𝑛 is the number of characters in the document, we
construct a B-tree whose leaves, from left to right, contain
the sequence of records representing characters. We extend
the tree into an order statistic tree [16] (also known as ranked
B-tree) by adding two integers to each node: the number of
records with 𝑠𝑝 = Ins contained within that subtree, and
the number of records with 𝑠𝑒 = Ins in that subtree. Every
time 𝑠𝑝 or 𝑠𝑒 are updated, we also update those numbers on
the path from the updated record to the root. As the tree is
balanced, this update takes 𝑂 (log𝑛).

Now we can find the 𝑖th record with 𝑠𝑝 = Ins in logarith-
mic time by starting at the root of the tree, and adding up
the values in the subtrees that have been skipped. Moreover,
once we have a record in the sequence we can efficiently
determine its index in the effect state by going in the op-
posite direction: working upwards in the tree towards the
root, and summing the numbers of records with 𝑠𝑒 = Ins
that lie in subtrees to the left of the starting record. This
allows us to efficiently transform the index of an operation
from the prepare version into the effect version. If the char-
acter was already deleted in the effect version (𝑠𝑒 = Del), the
transformed operation is a no-op.

The above process makes apply(𝑒𝑖 ) efficient. We also need
to efficiently perform retreat(𝑒𝑖 ) and advance(𝑒𝑖 ), which
modify the prepare state 𝑠𝑝 of the record inserted or deleted
by 𝑒𝑖 . While advancing/retreating we cannot look up a target
record by its index. Instead, we maintain a second B-tree,
mapping from each event’s ID to the target record. The map-
ping stores a value depending on the type of the event:

• For delete events, we store the ID of the character
deleted by the event.

• For insert events, we store a pointer to the leaf node in
the first B-tree that contains the corresponding record.

When nodes in the first B-tree are split, we update the
pointers in the second B-tree accordingly.

On every apply(𝑒), after updating the sequence as above,
we update this mapping. When we later call retreat(𝑒) or
advance(𝑒), that event 𝑒 must have already been applied, and
hence 𝑒.id must appear in this mapping. This map allows us
to advance or retreat in logarithmic time.

3.5 Clearing the internal state
As described so far, the algorithm retains every insertion
since document creation forever in its internal state, con-
suming a lot of memory, and requiring the entire event graph
to be replayed in order to restore the internal state. We now
introduce a further optimisation that allows Eg-walker to
completely discard its internal state from time to time, and
replay only a subset of the event graph.
We define a version 𝑉 ⊆ 𝐺 to be a critical version in an

event graph 𝐺 iff it partitions the graph into two subsets of
events𝐺1 = Events(𝑉 ) and𝐺2 = 𝐺 −𝐺1 such that all events
in 𝐺1 happened before all events in 𝐺2:

∀𝑒1 ∈ 𝐺1 : ∀𝑒2 ∈ 𝐺2 : 𝑒1 → 𝑒2 .

Equivalently, 𝑉 is a critical version iff every event in the
graph is either in 𝑉 , or an ancestor of some event in 𝑉 , or
happened after all of the events in 𝑉 :

∀𝑒1 ∈ 𝐺 : 𝑒1 ∈ Events(𝑉 ) ∨ (∀𝑒2 ∈ 𝑉 : 𝑒2 → 𝑒1).
A critical version might not remain critical forever; it is
possible for a critical version to become non-critical because
a concurrent event is added to the graph.
A key insight in the design of Eg-walker is that critical

versions partition the event graph into sections that can be
processed independently. Events that happened at or before
a critical version do not affect how any event after the crit-
ical version is transformed. This observation enables two
important optimisations:

• Any time the version of the event graph processed so
far is critical, we can discard the internal state (includ-
ing both B-trees and all 𝑠𝑝 and 𝑠𝑒 values), and replace
it with a placeholder as explained in Section 3.6.

• If both an event’s version and its parent version are
critical versions, there is no need to traverse the B-
trees and update the CRDT state, since we would im-
mediately discard that state anyway. In this case, the
transformed event is identical to the original event, so
the event can simply be emitted as-is.

These optimisations make it very fast to process docu-
ments that are mostly edited sequentially (e.g., because the
authors took turns and did not write concurrently, or because
there is only a single author), since most of the event graph
of such a document is a linear chain of critical versions.
The internal state can be discarded once replay is com-

plete, although it is also possible to retain the internal state
for transforming future events. If a replica receives events
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that are concurrent with existing events in its graph, but
the replica has already discarded its internal state resulting
from those events, it needs to rebuild some of that state. It
can do this by identifying the most recent critical version
that happened before the new events, replaying the existing
events that happened after that critical version, and finally
applying the new events. Events from before that critical
version are not replayed. Since most editing histories have
critical versions from time to time, this means that usually
only a small subset of the event graph is replayed. In the
worst case, this algorithm replays the entire event graph.

3.6 Partial event graph replay
Assume that we want to add event 𝑒new to the event graph
𝐺 , that 𝑉curr = Version(𝐺) is the current document version
reflecting all events except 𝑒new, and that 𝑉crit ≠ 𝑉curr is the
latest critical version in𝐺∪{𝑒new} that happened before both
𝑒new and 𝑉curr. Further assume that we have discarded the
internal state, so the only information we have is the latest
document state at 𝑉curr and the event graph; in particular,
without replaying the entire event graph we do not know
the document state at 𝑉crit.
Luckily, the exact internal state at 𝑉crit is not needed. All

we need is enough state to transform 𝑒new and rebase it onto
the document at 𝑉curr. This internal state can be obtained by
replaying the events since 𝑉crit, that is, 𝐺 − Events(𝑉crit), in
topologically sorted order:

1. We initialise a new internal state corresponding to
version 𝑉crit. Since we do not know the the document
state at this version, we start with a single placeholder
record representing the unknown document content.

2. We update the internal state by replaying events from
𝑉crit to 𝑉curr, but we do not output transformed opera-
tions during this stage.

3. Finally, we apply the new event 𝑒new and output the
transformed operation. If we received a batch of new
events, we apply them in topologically sorted order.

The placeholder record we start with in step 1 represents
the range of indexes [0,∞] of the document state at𝑉crit (we
do not know the length of the document at that version, but
we can still have a placeholder for arbitrarily many indexes).
Placeholders are counted as the number of characters they
represent in the order statistic tree construction, and they
have the same length in both the prepare and the effect
versions. We then apply events as follows:

• Applying an insertion at index 𝑖 creates a record with
𝑠𝑝 = 𝑠𝑒 = Ins and the ID of the insertion event. We
map the index to a record in the sequence using the
prepare state as usual; if 𝑖 falls within a placeholder for
range [ 𝑗, 𝑘], we split it into a placeholder for [ 𝑗, 𝑖 − 1],
followed by the new record, followed by a placeholder
for [𝑖, 𝑘]. Placeholders for empty ranges are omitted.

• Applying a deletion at index 𝑖: if the deleted character
was inserted prior to 𝑉crit, the index must fall within a
placeholder with some range [ 𝑗, 𝑘]. We split it into a
placeholder for [ 𝑗, 𝑖−1], followed by a new record with
𝑠𝑝 = Del 1 and 𝑠𝑒 = Del, followed by a placeholder
for [𝑖 + 1, 𝑘]. The new record has a placeholder ID that
only needs to be unique within the local replica, and
need not be consistent across replicas.

• Applying a deletion of a character inserted since 𝑉crit
updates the record created by the insertion.

Before applying an event we retreat and advance as usual.
The algorithm never needs to retreat or advance an event that
happened before 𝑉crit, therefore every retreated or advanced
event ID must exist in second B-tree.

If there are concurrent insertions at the same position, we
invoke the CRDT algorithm to place them in a consistent
order as discussed in Section 3.3. Since all concurrent events
must be after 𝑉crit, they are included in the replay. When
we are seeking for the insertion position, we never need
to seek past a placeholder, since the placeholder represents
characters that were inserted before 𝑉crit.

3.7 Algorithm complexity
Say we have two users who have been working offline, gen-
erating 𝑘 and𝑚 events respectively. When they come online
and merge their event graphs, the latest critical version is
immediately prior to the branching point. If the branch of
𝑘 events comes first in the topological sort, the replay algo-
rithm first applies 𝑘 events, then retreats 𝑘 events, applies
𝑚 events, and finally advances 𝑘 events again. Asymptoti-
cally, 𝑂 (𝑘 +𝑚) calls to apply/retreat/advance are required
regardless of the order of traversal, although in practice
the algorithm is faster if 𝑘 < 𝑚 since we don’t need to re-
treat/advance on the branch that is visited last.

Each apply/retreat/advance requires one or two traversals
of first B-tree, and at most one traversal of the second B-
tree. The upper bound on the number of entries in each tree
(including placeholders) is 2(𝑘 +𝑚) + 1, since each event
generates at most one new record and one placeholder split.
Since the trees are balanced, the cost of each traversal is
𝑂 (log(𝑘 +𝑚)). Overall, the cost of merging branches with 𝑘
and𝑚 events is therefore 𝑂 ((𝑘 +𝑚) log(𝑘 +𝑚)).
We can also give an upper bound on the complexity of

replaying an arbitrary event graph with 𝑛 events. Each event
is applied exactly once, and before each event we retreat
or advance each prior event at most once, at 𝑂 (log𝑛) cost.
The worst-case complexity of the algorithm is therefore
𝑂 (𝑛2 log𝑛), but this case is unlikely to occur in practice.

3.8 Storing the event graph
To store the event graph compactly on disk, we developed a
compression technique that takes advantage of how people
typically write text documents: namely, they tend to insert
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or delete consecutive sequences of characters, and less fre-
quently hit backspace or move the cursor to a new location.
Eg-walker’s event graph storage format is inspired by the
Automerge CRDT library [27, 32], which in turn uses ideas
from column-oriented databases [6, 55]. We also borrow
some bit-packing tricks from the Yjs CRDT library [30].
We first topologically sort the events in the graph. Dif-

ferent replicas may sort the graph differently, but locally
to one replica we can identify an event by its index in this
sorted order. Then we store different properties of events
in separate byte sequences called columns, which are then
combined into one file with a simple header. Each column
stores different fields of the event data. The columns are:

• Event type, start position, and run length. For exam-
ple, “the first 23 events are insertions at consecutive
indexes starting from index 0, the next 10 events are
deletions at consecutive indexes starting from index
7,” and so on. We encode this using a variable-length
binary encoding of integers, which represents small
numbers in one byte, larger numbers in two bytes, etc.

• Inserted content. An insertion event contains exactly
one character (a Unicode scalar value), and a deletion
does not. We concatenate the UTF-8 encoding of the
characters for insertion events in the same order as
they appear in the first column, and LZ4-compress.

• Parents. By default we assume that every event has ex-
actly one parent, namely its predecessor in the topolog-
ical sort. Any events for which this is not true are listed
explicitly, for example: “the first event has zero par-
ents; the 153rd event has two parents, namely events
31 and 152;” and so on.

• Event IDs. Each event is uniquely identified by a pair of
a replica ID and a per-replica sequence number. This
column stores runs of event IDs, for example: “the
first 1085 events are from replica 𝐴, starting with se-
quence number 0; the next 595 events are from replica
𝐵, starting with sequence number 0;” and so on.

Replicas can optionally also store a copy of the final docu-
ment state reflecting all events. This allows documents to be
loaded from disk without replaying the event graph.
We send the same data format over the network when

replicating the entire event graph. When sending a subset
of events over the network (e.g., a single event during real-
time collaboration), references to parent events outside of
that subset need to be encoded using event IDs of the form
(replicaID, seqNo), but otherwise the encoding is similar.

4 Evaluation
We created a TypeScript implementation of Eg-walker opti-
mised for simplicity and readability [24], and a production-
ready Rust implementation optimised for performance [25].
The TypeScript version omits the run-length encoding of
internal state, B-trees, and topological sorting heuristics.

To evaluate the correctness of Eg-walker we proved that
the algorithm complies with Attiya et al.’s strong list specifi-
cation [8] (see Appendix C). We also performed randomised
property testing on the implementations, including checking
that our implementations converge to the same result.

4.1 Editing traces
As there is no established benchmark for collaborative text
editing, we collected a set of editing traces from real doc-
uments and made them freely available [23]. Statistics for
these traces are given in Table 1. The traces represent the
editing history of the following documents:

Sequential Traces: These traces have no concurrency.
Trace S1 is the LaTeX source of a journal paper [33, 34],
S2 is an 8,800-word blog post [22], and S3 is the text of
this paper that you are currently reading. S2 has one
author; S1 and S3 have two authors who took turns.

Concurrent Traces: Trace C1 is two users collabora-
tively writing a reflection on TV series they have just
watched. C2 is two users collaboratively reflecting on
going to clown school together. We added 1 sec (C1)
or 0.5 sec (C2) artificial latency between the users to
increase the incidence of concurrent operations.

Asynchronous Traces: We reconstructed the editing
trace of some files in Git repositories. The event graph
mirrors the branching/merging of Git commits. Since
Git does not record individual keystrokes, we gener-
ated the minimal edit operations necessary to perform
each commit’s diff. Trace A1 is src/node.cc from the
Git repository for Node.js [4], and A2 is Makefile
from the Git repository for Git itself [3].

Even though the sequential traces do not exercise the
merging algorithm, they are important to include in the
benchmark. Anecdotal evidence suggests that the majority
of documents in practice are sequentially edited – that is,
they either have a single author, or multiple authors who
take turns to write. The concurrent traces have many short-
lived branches (see the graph runs column in Table 1). The
asynchronous traces have a small number of long-running
branches, which occur in the context of offline working or
editors that support explicit branching and merging [40, 42].
We recorded the sequential and concurrent traces our-

selves, collaborating with friends or colleagues, using an in-
strumented text editor that recorded keystroke-granularity
editing events. All contributors to the traces have given their
consent for their recorded keystroke data to be made publicly
available and to be used for benchmarking purposes. The
asynchronous traces are derived from public data on GitHub.

The recorded editing traces originally varied a great deal
in length. To allow easier comparison of measurements be-
tween traces, we have normalised the length of the traces to
contain approximately 500k inserted characters (except for
S3, which is approximately twice this size). We did this by

10



Collaborative Text Editing with Eg-walker: Better, Faster, Smaller EuroSys ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 1. The text editing traces used in our evaluation. Repeats: number of times the original trace was repeated to normalise
its length relative to the other traces. Events: total number of editing events, in thousands, including repeats. Each inserted or
deleted character counts as one event. Average concurrency: mean number of concurrent branches per event in the trace. Graph
runs: number of sequential runs of events (linear event sequences without branching/merging). Authors: number of users
who added at least one event. Chars remaining: percentage of inserted characters that remain in the document (i.e., are never
deleted) after all events have been merged. Final size: resulting document size in kilobytes after all events have been merged.

Name Type Repeats Events (k) Avg Concurrency Graph runs Authors Chars remaining (%) Final size (kB)

S1 sequential 3 779 0.00 1 2 57.5 307.2
S2 sequential 3 1105 0.00 1 1 26.7 166.3
S3 sequential 1 2339 0.00 1 2 9.9 119.5
C1 concurrent 25 652 0.43 92101 2 90.1 521.5
C2 concurrent 25 608 0.44 133626 2 93.0 516.3
A1 asynchronous 1 947 0.10 101 194 7.8 37.2
A2 asynchronous 2 698 6.11 2430 299 49.6 222.0

repeating the original S1 and S2 traces 3 times, the original
C1 and C2 traces 25 times, and the original A2 trace twice.
The statistics given in Table 1 are after repetition.

4.2 Experimental approach
To evaluate the performance of Eg-walker, we compare our
Rust implementation with two popular CRDT libraries: Au-
tomerge v0.5.9 [1] (Rust) and Yjs v13.6.10 [30] (JavaScript).1
We only test their collaborative text datatypes, and not the
other features they support. However, the performance of
these libraries varies widely. In an effort to distinguish be-
tween implementation differences and algorithmic differ-
ences, we have also implemented our own performance-
optimised reference CRDT library. This library shares most
of its codewith our Rust Eg-walker implementation, enabling
amore like-to-like comparison between the traditional CRDT
approach and Eg-walker. Our reference CRDT outperforms
both Yjs and Automerge.

We have also implemented a simple OT library using the
TTF algorithm [46].We do not use the server-based Jupiter al-
gorithm [44] or the popular OT library ShareDB [21] because
they do not support the branching and merging patterns that
occur in our asynchronous traces.

We compare these implementations along 3 dimensions:2

Speed: The CPU time to load a document into memory,
and to merge a set of updates from a remote replica.

1We also tested Yrs [58], the Rust rewrite of Yjs by the original authors. At
the time of our experiments it performed worse than Yjs, so we omitted it
from our results.
2Experimental setup: We ran the benchmarks on a Ryzen 7950x CPU run-
ning Linux 6.5.0-28 and 64GB of RAM. We compiled Rust code with rustc
v1.78.0 in release mode with “-C target-cpu=native”. Rust code was
pinned to a single CPU core to reduce variance across runs. For JavaScript
(Yjs) we used Node.js v22.2.0. All reported time measurements are the mean
of at least 100 test iterations (except for the case where OT takes an hour
to merge trace A2, which we ran 10 times). The standard deviation for
all benchmark results was less than 1.2% of the mean, except for the Yjs
measurements, which had a stddev of less than 6%. Error bars on our graphs
are too small to be visible.

Memory usage: The RAM used while a document is
loaded and while merging remote updates.

Storage size: The number of bytes needed to persis-
tently store a document or send it over the network.

By design, our experiments do not run over a network,
but focus on single-node CPU and memory use (along with
storage size, which is also a measure of network bandwidth
used). We made this choice because memory use and loading
time are the biggest challenges with CRDTs, and CPU time on
long-running branches is the biggest challenge with OT. We
delegate replication to the reliable broadcast protocol, which
is beyond the scope of this paper. Moreover, the results in a
distributed setup would depend highly on the online/offline
pattern we assume; running on a single node allows us to
more directly compare the algorithms.

4.3 Time taken to load and merge changes
The slowest operations in many collaborative editors are:

• merging a large set of edits from a remote replica into
the local state (e.g. reconnecting after working offline);

• loading a document from disk into memory so that it
can be displayed and edited.

To simulate a worst-case merge, we start with an empty
document and then merge an entire editing trace into it. In
the case of Eg-walker this means replaying the full trace.
Figure 8 shows the merge time for each implementation.
Such a large merge occurs in practice when a node has been
offline for a long time and needs to catch up on most of the
editing history, or when replaying a subset of the editing
history in order to reconstruct a historical version of the
document (for history visualisation). Moreover, in the CRDT
implementations we tested, loading a document from disk
takes the same CPU time as merging all of the events. Smaller
merges, which occur during online collaboration, are faster.

After merging the entire trace, we save the resulting local
replica state to disk and measure the CPU time to load it
back into memory. Since loading and merging take the same
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Figure 8. The CPU time taken by each algorithm to merge
all events in each trace (as received from a remote replica),
or to reload the resulting document from disk. The CRDT im-
plementations (Ref CRDT, Automerge and Yjs) take the same
amount of time to merge changes as they do to subsequently
load the document. The red line at 16 ms indicates the time
budget available to an application that wants to show the
results of an operation by the next frame, assuming a display
with a 60 Hz refresh rate.

time in the CRDTs we tested, we do not show their loading
times separately in Figure 8. In these algorithms, the CRDT
metadata needs to be in memory for the user to be able to edit
the document, or to apply any updates received from other
replicas (even when there is no concurrency). In contrast,
OT and Eg-walker can load documents orders of magnitude
faster than CRDTs by caching the final document state on
disk, and loading just this data (essentially a plain text file).
Eg-walker and OT only need to load the event graph when
merging concurrent changes or to reconstruct old document
versions. Document edits by the local user or applying non-
concurrent remote events do not need the event graph.

We can see in Figure 8 that Eg-walker and OT are very fast
to merge the sequential traces (S1, S2, S3), since they sim-
ply apply the operations with no transformation. However,
OT performance degrades dramatically on the asynchro-
nous traces (6 seconds for A1, and 1 hour for A2) due to the
quadratic complexity of the algorithm, whereas Eg-walker
remains fast (160,000× faster in the case of A2).
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Figure 9. Time taken for Eg-walker to merge all events in a
trace, with and without the optimisations from Section 3.5.

On the concurrent traces (C1, C2) and asynchronous trace
A2, the merge time of Eg-walker is similar to that of our ref-
erence CRDT, since they perform similar work. Both are sig-
nificantly faster than the state-of-the-art Yjs and Automerge
CRDT libraries; this is due to implementation differences
and not fundamental algorithmic reasons.
On the sequential traces Eg-walker outperforms our ref-

erence CRDT by a factor of 7–10×, and on trace A1 (which
contains large sequential sections) Eg-walker is 5× faster.
Comparing to Yjs or Automerge, this speedup is greater still.
This is due to Eg-walker’s ability to clear its internal state
and skip all of the internal state manipulation on critical ver-
sions (Section 3.5). To quantify this effect, Figure 9 compares
the time taken to replay all our traces with this optimisa-
tion enabled and disabled. We see that the optimisation is
effective for S1, S2, S3, and A1, whereas for C1, C2, and A2
it makes little difference (A2 contains no critical versions).

Whenmerging an event graphwith very high concurrency
(like A2), the performance of Eg-walker is highly dependent
on the order in which events are traversed. A poorly chosen
traversal order can make this trace as much as 8× slower to
merge. Our topological sort algorithm (Section 3.2) tries to
avoid such pathological cases.

4.4 RAM usage
Figure 10 shows the memory footprint (retained heap size)
of each algorithm. For Eg-walker and OT it shows both peak
usage (while replaying the entire editing trace) and “steady
state” memory usage (after temporary data and Eg-walker’s
internal state are discarded and the event graph is written
out to disk). For the CRDTs the figure shows steady state
memory usage; peak usage is up to 25% higher.

Eg-walker’s peak memory use is similar to our reference
CRDT’s steady state: slightly lower on the sequential traces,
and approximately double for the concurrent traces. How-
ever, the steady-state memory use of Eg-walker is 1–2 orders
of magnitude lower than the best CRDT. This is a signifi-
cant result, since the steady state is what matters during
normal operation while a document is being edited. Mem-
ory usage reaches this peak only when replaying the entire
trace; it is lower when merging a small branch. Yjs has up
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Figure 10. RAM used while merging an editing trace re-
ceived from another replica. Eg-walker and OT only retain
the current document text in the steady state, but need addi-
tional RAM at peak while merging concurrent changes.

to a 3× greater memory use than our reference CRDT, and
Automerge an order of magnitude greater.

OT has the same memory use as Eg-walker in the steady
state, but significantly higher peak memory use on the C1,
C2, and A2 traces (6.8 GiB for A2). The reason is that our
OT implementation memoizes intermediate transformed op-
erations to improve performance. This memory use could
be reduced at the cost of increased merge times. The com-
puter we used for benchmarking had enough RAM to prevent
swapping in all cases.

4.5 Storage size
Our binary encoding of event graphs (Section 3.8) results
in smaller files than the equivalent internal CRDT state per-
sisted by Automerge, and in many cases, Yjs. To ensure a
like-for-like comparison we have disabled Eg-walker’s built-
in LZ4 and Automerge’s built-in gzip compression. Enabling
this compression further reduces the file sizes.
Automerge stores the full editing history of a document,

and Figure 11 shows the resulting file sizes relative to the
raw concatenated text content of all insertions, with and
without a cached copy of the final document state (to enable
fast loads).
In contrast, Yjs only stores the resulting document text,

and any data needed to merge changes. Yjs does not store
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Figure 11. File size storing edit traces using Eg-walker’s
event graph encoding (with and without final document
caching) compared to Automerge. The lightly shaded region
in each bar shows the concatenated length of all stored text.
This acts as lower bound on the file size.
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Figure 12. File size storing edit traces in which deleted text
content has been omitted, as is the case with Yjs. The lightly
shaded region in each bar is the size of the final document,
which is a lower bound on the file size.

deleted characters or the happened-before relationship be-
tween events. Figure 12 compares Yjs to the equivalent event
graph encoding in which we only store the final document
text and operation metadata. Our encoding is smaller than
Yjs on the sequential and async traces, but larger for the con-
current traces, where the edges in the event graph take more
space. The overhead of storing the event graph is between
20% and 3× the final plain text file size.

5 Related Work
Eg-walker is an example of a pure operation-based CRDT
[9], which is a family of algorithms that capture a DAG (or
partially ordered log) of operations in the form they were
generated, and define the current state as a query over that
log. However, existing publications on pure operation-based
CRDTs [7, 10] present only datatypes such as maps, sets, and
registers; Eg-walker adds a list/text datatype to this family.

MRDTs [54] are similarly based on a DAG, and use a three-
way merge function to combine two branches since their
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lowest common ancestor; if the LCA is not unique, a recur-
sive merge is used. MRDTs for various datatypes have been
defined, but so far none offers text with arbitrary insertion
and deletion.
Toomim’s time machines approach [59] shares a concep-

tual foundation with Eg-walker: both are based on traversing
an event graph, with operations being transformed from their
original form into a form that can be applied in topologically
sorted order. Toomim also points out that CRDTs can imple-
ment this transformation. Eg-walker is a concrete, optimised
implementation of the time machine approach; novel contri-
butions of Eg-walker include updating the prepare version
by retreating and advancing, as well as the details of internal
state clearing and partial event graph replay.
Eg-walker is also an operational transformation (OT) al-

gorithm [18]. OT has a long lineage of research going back
to the 1990s [44, 51, 56]. To our knowledge, all existing OT
algorithms consist of a set of transformation functions that
transform one operation with regard to one other operation,
and a control algorithm that traverses an editing history and
invokes the necessary transformations. A problem with this
architecture is that when two replicas have diverged and
each performed 𝑛 operations, merging their states unavoid-
ably has a cost of at least 𝑂 (𝑛2); in some OT algorithms the
cost is cubic or even worse [39, 52, 57]. Eg-walker departs
from the transformation function/control algorithm architec-
ture and instead performs transformations using an internal
CRDT state, which reduces the merging cost to 𝑂 (𝑛 log𝑛)
in most cases; the upper bound of 𝑂 (𝑛2 log𝑛) is unlikely to
occur in practical editing histories.

Other collaborative text editing algorithms [49, 52, 60, 61]
belong to the family of conflict-free replicated data types
(CRDTs) [53]. To our knowledge, all existing CRDTs for text
work by assigning each character a unique ID, and trans-
lating index-based insertions and deletions into ID-based
ones. These unique IDs need to be held in memory when a
document is being edited, persisted for the lifetime of the
document, and sent to all replicas. In contrast, Eg-walker
uses unique IDs only transiently during replay but does not
persist or replicate them, and it can free its internal state
whenever a critical version is reached. Eg-walker needs to
store the event graph as long as concurrent operations may
arrive, but this takes less space than CRDT state, and it only
needs to be in-memory while merging concurrent operations.
Most of the time the event graph can remain on disk.

Gu et al.’s mark & retrace method [28] builds a CRDT-like
structure containing the entire editing history, not only the
parts being merged. Differential synchronization [20] relies
on heuristics such as similarity-matching of text to perform
merges, which is not guaranteed to converge.
Version control systems such as Git [14], Pijul [43], and

Darcs [2] also track the editing history of text files. However,
they do not support real-time collaboration, and they are

line-based (good for code), whereas Eg-walker is character-
based (which is better for prose). Git uses a three-way merge,
which is not reliable on files containing substantial repeated
text [31]. Merges in Darcs have worst-case exponential com-
plexity [37], and Pijul merges using a CRDT that assigns a
unique ID to every line [5].

6 Conclusion
Eg-walker is a new approach to collaborative text editing
that has characteristics of both CRDTs and OT. It is orders of
magnitude faster than existing algorithms in the best cases,
and competitive with the fastest existing implementations in
the worst cases. Compared to existing CRDTs, it uses orders
of magnitude less memory in the steady state, files are vastly
faster to load for editing, and in documents with largely
sequential editing edits from other users are merged much
faster. Compared to OT, large merges (e.g., when two users
each did a significant amount of work while offline) are much
faster, and Eg-walker supports arbitrary branching/merging
patterns (e.g., in peer-to-peer collaboration).

Since Eg-walker stores a fine-grained editing history of a
document, it allows applications to show that history to the
user, and to restore arbitrary past versions of a document by
replaying subsets of the graph. The underlying event graph is
not specific to the Eg-walker algorithm, so we expect that the
same data format will be able to support future collaborative
editing algorithms as well. The core idea of Eg-walker is not
specific to plain text; we believe it can be extended to other
file types such as rich text, graphics, or spreadsheets.

Until now, many applications have been implemented us-
ing centralised server-based OT to avoid the overheads of
CRDTs. Eg-walker is the first CRDT to match OT’s mem-
ory use and performance on sequential editing histories
(which are common in practice), while avoiding the qua-
dratic merge complexity that makes OT impractical for long-
running branches. By requiring no server, Eg-walker makes
it possible for decentralised, local-first software [36] to be-
come competitive with traditional cloud software.
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A Artifact Appendix
A.1 Abstract
Our artifact is an implementation of the Eg-walker algorithm,
together with the datasets and benchmarking tools required
to run the experiments described in the paper. Specifically,
it contains the following items:

• Editing traces of text documents that we use for bench-
marking (see Table 1), in our own binary format and
as JSON

• Source code for the following tools:
– Our optimised Eg-walker implementation, written
in Rust

– Our reference CRDT implementation
– Our reference OT implementation
– Tools to convert our editing traces to JSON, and to
the Yjs and Automerge file formats

– Benchmarking tools to reproduce all experiments
• The tools to generate the figures in this paper

A.2 Description & Requirements
A.2.1 How to access. All code and data of the artifact is
publicly available in the following GitHub repository:

https://github.com/josephg/egwalker-paper
A snapshot of this repository is archived at:
https://zenodo.org/records/13823409
doi:10.5281/zenodo.13823409
The README file in this repository contains detailed in-

structions to configure & run our code locally.

A.2.2 Hardware dependencies. To run our experiments,
you need the following:

• A computer running Linux. Our software should work
on a number of other systems including Windows and
MacOS, but we have not tested on other platforms.

• At least 8GB of RAM, but 16GB is recommended. This
is mainly required for the OT/A2 benchmark, which at
peak uses approximately 7GB of RAM.

• Plenty of disk space. The Rust compiler produces a lot
of temporary files – 44GB on our system.

A.2.3 Software dependencies. You need a recent com-
piler and runtime for the Rust programming language. We
have tested with Rust 1.78; newer versions should also work.
You also need NodeJS installed in order to run the Yjs

benchmark and to generate the charts showing our results.
We used version 21.

Other software dependencies are managed through Cargo
and npm respectively, and they are automatically installed
as part of the build process.

A.2.4 Benchmarks. The datasets used by our benchmarks
are included in the datasets/ folder of our artifact reposi-
tory, and the code to run the benchmarks is in the tools/

folder. Each of these folders contains a README.md file that
documents its contents in more detail.

A.3 Set-up
Install Rust (the easiest way is via rustup) and NodeJS.

A.4 Evaluation workflow
Please see the README.md file in the artifact repository for a
detailed description of the process.

A.4.1 Major Claims.
C1. Eg-walker is competitive with existing state-of-the-

art collaborative editing systems in terms of file size,
memory usage, and CPU time taken to merge changes.
That is, on all our benchmarks, Eg-walker has at most
≈ 2× the cost of the other systems we test, and in some
cases dramatically lower cost. Experiments E1, E2, E3
and Figures 8–12 support this claim.

C2. On editing traces with long-running branches, the
merge performance of Eg-walker is several orders of
magnitude faster than OT, and slightly faster than the
best CRDT implementations. This claim is supported
by Experiment E3 and the data in Figure 8.

C3. On sequential editing traces, Eg-walker is as fast as
OT, and about an order of magnitude faster than our
reference CRDT (which in turn is the fastest among the
CRDTs we tested). This is supported by Experiment
E3 and the data in Figure 8. This is in large part due to
the optimisations in Section 3.5, as shown in Figure 9.

C4. The time to load a document from disk (to view and
edit) with Eg-walker is the same as with OT, which is
several orders of magnitude faster than all CRDTs we
tested. Experiment E3 and Figure 8 also show this.

C5. The steady-state memory consumption of Eg-walker
is at least an order of magnitude lower than that of
CRDTs, and the same as OT. The peak memory con-
sumption of Eg-walker during merging is similar to
the steady state of CRDTs, and lower than OT. This
claim is supported by Experiment E2 and the data in
Figure 10.

A.4.2 Experiment E1: File sizes (4 compute-hours).
Converts the raw editing traces in the datasets/raw di-
rectory into the Yjs, Automerge, and Eg-walker file formats
(datasets/*.{yjs,am,dt}). Some of the traces are repeated
several times so that they have a similar size (see Section 4.1).
The sizes of the resulting files are reported in Figure 11 and
Figure 12. The files also form an input to the subsequent
experiments. The output files are included with the artifact
so that the later experiments can be run without having to
run this one.

To run this experiment:
rm datasets/*
./step1-prepare.sh
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The resulting files should be byte-for-byte identical to those
in the artifact. This experiment is slow because we have not
made much effort to optimise it.

To generate the figures:
node collect.js
cd svg-plot
npm i # only needed once to install dependencies
node render.js

which writes Figure 11 to diagrams/filesize_full.svg
and Figure 12 to diagrams/filesize_smol.svg.

A.4.3 Experiment E2: Memory use (1 compute-hour).
This experiment measures memory use – both the peakmem-
ory use while replaying each editing trace, and the “steady
state” memory use once the replay is complete (keeping in
memory the structures that are needed to display and edit a
document, but freeing the structures that are needed only
for replay and merging concurrent edits). We test with the
following algorithms:

• Diamond-types (DT): our optimised Eg-walker imple-
mentation

• DT-CRDT: our reference CRDT implementation
• Automerge [1]
• Yjs [30]
• Yrs, the port of Yjs to Rust by the original authors [58]
• OT: our reference OT implementation

To run this experiment:
./step2a-memusage.sh

Then use collect.js and render.js like in E1 to generate
Figure 10 (diagrams/memusage.svg). The data appears in
results/*_memusage.json.
Note: Our OT implementation takes 1 hour to replay the

A2 editing trace.

A.4.4 Experiment E3: Merge time (12 compute-hours).
This experiment measures the CPU time taken to merge the
entire editing trace into an empty document, as if it had been
received from a remote peer. The benchmarks cover the same
algorithms as Experiment E2. To run this experiment:

./step2b-benchmarks.sh

Then use collect.js and render.js like in E1 to generate
the charts for Figure 8 (diagrams/timings.svg) and Fig-
ure 9 (diagrams/ff.svg). The script writes summary data
to results/timings.json.

A.5 Notes on Reusability
While our artifact contains a snapshot of our Eg-walker
implementation at the time of this paper was written, the
ongoing development of the implementation is part of the
Diamond Types project in the following repository:

https://github.com/josephg/diamond-types
Diamond Types is freely available under the ISC license.

As part of this work, we have also created several editing
traces of real text documents, as described in Section 4.1. The
intention is that these traces can be used in future research
for benchmarking collaborative text editing systems. The
datasets/ directory of the artifact contains those traces in
JSON format. Additional traces that we may collect in the
future will be added to the following repository:

https://github.com/josephg/editing-traces
That repository also contains documentation of the JSON-

based file format that we use to encode the editing traces.
If you want to benchmark a CRDT using these editing

traces, you need to convert them to your CRDT’s local for-
mat. We do this by simulating (in memory) a set of collabo-
rating peers. The peers fork and merge their changes. The
tools/crdt-converter directory of our artifact contains
code to perform this process using Automerge and Yjs (Yrs).
We believe this algorithm could be adapted to support most
existing CRDT formats and systems.

A.6 General Notes
The performance of collaborative editing systems varies by
orders of magnitude depending on how the implementation
has been optimised. For example, early CRDTs were widely
thought to be impractical in real systems because they were
so slow and memory-inefficient, taking gigabytes of RAM
and hard disk space to process editing traces smaller than
the ones we present in this paper. And yet, the CRDTs we
benchmark here, like Yjs and Automerge, can process large
documents with very reasonable computational resources.
These improvements have come through a mixture of

improved data structures and algorithms, and improved im-
plementation techniques such as reduced memory allocation
and better memory layout. Unfortunately, the techniques
that these implementations use to achieve their performance
are not well documented in either the academic literature
or the documentation of those projects. It is difficult to de-
termine which combination of factors is responsible for a
performance improvement.

As a result, it is difficult to fairly compare algorithms that
are implemented by different developers and use different
implementation techniques. We have attempted to address
this issue by writing our own reference CRDT and OT im-
plementations that use a similar implementation style to
our optimised Eg-walker implementation, enabling as much
as possible an apples-for-apples comparison. We hope that
future research will be able to develop more rigorous ap-
proaches to evaluating collaborative editing systems.
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B Algorithm Pseudocode
Listing 1 and Listing 2 provide simplified pseudocode for the core Eg-walker algorithm as described in Section 3.2 and 3.3. For
brevity, the pseudocode does not include the B-trees from Section 3.4, the state clearing optimisation from Section 3.5, and the
partial replay optimisation from Section 3.6.

let events: EventStorage // Assumed to contain all events

enum PREPARE_STATE {
NOT_YET_INSERTED = 0
INSERTED = 1
// Any state 2+ means the item has been concurrently deleted n-1 times.

}

// Each of these corresponds to a single inserted character.
type AugmentedCRDTItem {

// The fields from the CRDT that determines insertion order
id, originLeft, originRight,

// State at effect version. Either inserted or inserted-and-subsequently-deleted.
ever_deleted: bool,

// State at prepare version (affected by retreat / advance)
prepare_state: uint,

}

fn space_in_prepare_state(item: AugmentedCRDTItem) {
if item.prepare_state == INSERTED { return 1 } else { return 0 }

}

fn space_in_effect_state(item: AugmentedCRDTItem) {
if !item.ever_deleted { return 1 } else { return 0 }

}

// We have an efficient algorithm for this in our code. See diff() in causal-graph.ts.
fn diff(v1, v2) -> (only_in_v1, only_in_v2) {

// This function considers the transitive expansion of the versions v1 and v2.
// We return the set difference between the transitive expansions.
let all_events_v1 = {set of all events in v1 + all events which happened-before any event in v1}
let all_events_v2 = {set of all events in v2 + all events which happened-before any event in v2}

return (
set_subtract(all_events_v1 - all_events_v2),
set_subtract(all_events_v2 - all_events_v1)

)
}

Listing 1. Pseudocode for the Eg-walker algorithm (continued in Listing 2).
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fn generateDocument(events) {
let cur_version = {} // Frontier version

// List of AugmentedCRDTItems. This could equally be an RGA tree or some other data structure.
let crdt = []

// Resulting document text
let resulting_doc = ""

// Some traversal obeying partial order relationship between events.
for e in events.iter_in_causal_order() {

// Step 1: Prepare
let (a, b) = diff(cur_version, e.parent_version)
for e in a {

// Retreat
let item = crdt.find_item_by_id(e.id)
item.prepare_state -= 1

}
for e in b {

// Advance
let item = crdt.find_item_by_id(e.id)
item.prepare_state += 1

}

// Step 2: Apply
if e.type == Insert {

// We find the insertion position in the crdt using the prepare_state variables.
let ins_pos = idx_of(crdt, e.pos, PREPARE_STATE)
// Then insert here using the underlying CRDT's rules.
let origin_left = prev_item(ins_pos).id or START
// Origin_right is the ID of the first item after ins_pos where prepare_state >= 1.
let origin_right = next_item(crdt, ins_pos, item => item.prepare_state >= INSERTED).id or END

// Use an existing CRDT to determine the order of concurrent insertions at the same position
crdt_integrate(crdt, {

id: e.id,
origin_left,
origin_right,
ever_deleted: false,
prepare_state: 1

})

let effect_pos = crdt[0..ins_pos].map(space_in_effect_state).sum()
resulting_doc.splice_in(effect_pos, e.contents)

} else {
// Delete
let idx = idx_of(crdt, e.pos, PREPARE_STATE)
// But this time skip any items which aren't in the inserted state.
while crdt[idx].prepare_state != INSERTED { idx += 1 }
// Mark as deleted.
crdt[idx].ever_deleted = true
crdt[idx].prepare_state += 1

let effect_pos = crdt[0..idx].map(space_in_effect_state).sum()
resulting_doc.delete_at(effect_pos)

}

cur_version = {e.id}
}

return resulting_doc
}

Listing 2. Continuation of the pseudocode in Listing 1.
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C Proof of Correctness
We now demonstrate that Eg-walker is correct by showing
that it satisfies the strong list specification proposed by At-
tiya et al. [8], a formal specification of collaborative text
editing. Informally speaking, this specification requires that
replicas converge to the same document state, that this state
contains exactly those characters that were inserted but not
deleted, and that inserted characters appear in the correct
place relative to the characters that surrounded it at the time
it was inserted. Assuming network partitions are eventually
repaired, this is a stronger specification than strong eventual
consistency [53], which is a standard correctness criterion
for CRDTs [26].
With a suitable algorithm for ordering concurrent inser-

tions at the same position, Eg-walker is also able to achieve
maximal non-interleaving [60], which is a further strength-
ening of the strong list specification. However, since that
algorithm is out of scope of this paper, we also leave the
proof of non-interleaving out of scope.

C.1 Definitions
Let Char be the set of characters that can be inserted in a
document. Let Op = {Insert (𝑖, 𝑐) | 𝑖 ∈ N ∧ 𝑐 ∈ Char} ∪
{Delete(𝑖) | 𝑖 ∈ N} be the set of possible operations. Let ID
be the set of unique event identifiers, and let Evt = ID ×
P(ID) × Op be the set of possible events consisting of a
unique ID, a set of parent event IDs, and an operation. When
𝑒 ∈ 𝐺 and 𝑒 = (𝑖, 𝑝, 𝑜) we also use the notation 𝑒.id = 𝑖 ,
𝑒.parents = 𝑝 , and 𝑒.op = 𝑜 .

Definition C.1. An event graph 𝐺 ⊆ Evt is valid if:
1. every event 𝑒 ∈ 𝐺 has an ID 𝑒.id that is unique in 𝐺 ;
2. for every event 𝑒 ∈ 𝐺 , every parent ID 𝑝 ∈ 𝑒.parents

is the ID of some other event in 𝐺 ;
3. the graph is acyclic, i.e. there is no subset of events

{𝑒1, 𝑒2, . . . , 𝑒𝑛} ⊆ 𝐺 such that 𝑒1 is a parent of 𝑒2, 𝑒2 is
a parent of 𝑒3, . . . , and 𝑒𝑛 is a parent of 𝑒1; and

4. for every event 𝑒 ∈ 𝐺 , the index at which 𝑒.op inserts
or deletes is an index that exists (is not beyond the end
of the document) in the document version defined by
the parents 𝑒.parents.

Since event graphs grow monotonically and we never
remove events, it is easy to ensure that the graph remains
valid whenever a new event is added to it.

Attiya et al. make a simplifying assumption that every
insertion operation has a unique character. We use a slightly
stronger version of the specification that avoids this assump-
tion. We also simplify the specification by using our event
graph definition instead of the original abstract execution
definition (containing message broadcast/receive events and
a visibility relation). These changes do not affect the sub-
stance of the proof: each node of our event graph corresponds
to a do event in the original strong list specification, and the

transitive closure of our event graph is equivalent to the
visibility relation.

For a given event graph 𝐺 we define a replay function
replay(𝐺) as introduced in Section 2.4, based on the Eg-
walker algorithm. It iterates over the events in 𝐺 in some
topologically sorted order, transforming the operation in
each event as described in Section 3, and then applying the
transformed operation to the document state resulting from
the operations applied so far (starting with the empty doc-
ument). In a real implementation, replay returns the final
document state as a concatenated sequence of characters. For
the sake of this proof, we define replay to instead return a se-
quence of (id, 𝑐) pairs, where id is the unique ID of the event
that inserted the character 𝑐 . This allows us to distinguish
between different occurrences of the same character. The
text of the document can be recovered by simply ignoring
the id of each pair and concatenating the characters.
We can now state our modified definition of the strong

list specification:

Definition C.2. A collaborative text editing algorithm with
a replay function replay(𝐺) satisfies the strong list specifi-
cation if for every valid event graph 𝐺 ⊂ Evt there exists a
relation lo ⊂ ID × ID called the list order, such that:

1. For event 𝑒 ∈ 𝐺 , let 𝐺𝑒 = {𝑒} ∪ Events(𝑒.parents) be
the set of all events that happened before 𝑒 and 𝑒 itself.
Let doc𝑒 = replay(𝐺𝑒 ) = ⟨(id0, 𝑐0), . . . , (id𝑛−1, 𝑐𝑛−1)⟩
be the document state immediately after locally gen-
erating 𝑒 , where 𝑐𝑖 ∈ Char and id𝑖 ∈ ID. Then:
a. doc𝑒 contains exactly the elements that have been

inserted but not deleted in 𝐺𝑒 :

(∃𝑖 ∈ [0, 𝑛 − 1] : doc𝑒 [𝑖] = (id, 𝑐)) ⇐⇒
(∃𝑎 ∈ 𝐺𝑒 , 𝑗 ∈ N : 𝑎.id = id ∧ 𝑎.op = Insert ( 𝑗, 𝑐)) ∧

(�𝑏 ∈ 𝐺𝑒 , 𝑘 ∈ N : 𝑏.op = Delete(𝑘) ∧
replay(Events(𝑏.parents)) [𝑘] = (id, 𝑐)) .

b. The order of the elements in doc𝑒 is consistent with
the list order:

∀𝑖, 𝑗 ∈ [0, 𝑛 − 1] : 𝑖 < 𝑗 =⇒ (id𝑖 , id 𝑗 ) ∈ lo.

c. Elements are inserted at the specified position:

∀𝑖, 𝑐 : 𝑒.op = Insert (𝑖, 𝑐) =⇒ doc𝑒 [𝑖] = (𝑒.id, 𝑐).
2. The list order lo is transitive, irreflexive, and total, and

thus determines the order of all insert operations in
the event graph.

C.2 Proving Convergence
LemmaC.3. Let 𝑒 be an event in a valid event graph such that
𝑒.op = Delete(𝑖). In the internal state immediately before ap-
plying 𝑒 (in which all events that happened before 𝑒 have been
advanced and all others have been retreated), either the record
that 𝑒 will update has 𝑠𝑝 = Ins, or it is part of a placeholder
(which behaves like a sequence of 𝑠𝑝 = Ins records).
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Proof. If we had 𝑠𝑝 = NotInsertedYet, that would imply
that we retreated the insertion of the character deleted by
𝑒 , which contradicts the fact that the insertion of a charac-
ter must happen before any deletion of the same character.
Furthermore, if we had 𝑠𝑝 = Del 𝑘 for some 𝑘 , that would
imply that an event that happened before 𝑒 already deleted
the same character, in which case it would not be possible to
generate 𝑒 . This leaves 𝑠𝑝 = Ins or placeholder as the only
options that do not result in a contradiction. □

Lemma C.4. Let 𝑆0 be some internal Eg-walker state, and let
𝑎 and 𝑏 be two concurrent events. Let 𝑆1 be the internal state
resulting from updating 𝑆0 with retreat and advance calls so
that the prepare version of 𝑆1 equals the parents of 𝑏. Let 𝑆2 be
the internal state resulting from first replaying 𝑎 on top of 𝑆0,
and then retreating and advancing so that the prepare version
of 𝑆2 equals the parents of 𝑏. Then the only difference between
𝑆1 and 𝑆2 is in the record inserted or updated by 𝑎 (and possibly
the split of a placeholder that this record falls within); the rest
of 𝑆1 and 𝑆2 is the same.

Proof. Since 𝑆0 is produced by Eg-walker, it contains records
for all characters that have been inserted or deleted by events
since the last critical version prior to𝑎 and𝑏, it contains place-
holders for any characters inserted but not deleted prior to
that critical version, and it does not contain anything for
characters that were deleted prior to that critical version.
By the definition of critical version, any event 𝑒 that is con-
current with 𝑎 or 𝑏 must be after the critical version, and
therefore the record that is updated by 𝑒 must exist in 𝑆0.
𝑆1 has the same record sequence and the same 𝑠𝑒 in each

record as 𝑆0, since retreating and advancing do not change
those things. The 𝑠𝑝 values in 𝑆1 are set so that every record
inserted by an event that is concurrent with 𝑏 has 𝑠𝑝 =

NotInsertedYet, every record whose insertion happened
before 𝑏 but which was not deleted before 𝑏 has 𝑠𝑝 = Ins,
and every record that was deleted by 𝑘 > 0 separate events
before 𝑏 has 𝑠𝑝 = Del 𝑘 . To achieve this it is sufficient to
consider events that happened after the last critical version.
Thus, the 𝑠𝑝 values in 𝑆1 do not depend on the 𝑠𝑝 values in 𝑆0,
and they do not depend on any events that are concurrent
with 𝑏.

Replaying 𝑎 on top of 𝑆0 involves first updating the 𝑠𝑝
values to set the prepare version to the parents of 𝑎 (which
may differ from the parents of 𝑏), and then applying 𝑎, which
either inserts or updates a record in the internal state, and
possibly splits a placeholder to accommodate this record. 𝑆2
is then produced by updating all of the 𝑠𝑝 values in the same
way as for 𝑆1. As these 𝑠𝑝 values depend only on𝑏.parents and
not on 𝑎, 𝑆2 is identical to 𝑆1 except for the record inserted
or updated by 𝑎. □

Lemma C.5. Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.op = Insert (𝑖, 𝑐𝑖 ) and 𝑏.op = Insert ( 𝑗, 𝑐 𝑗 ). If we start with
some internal state and document state and then replay 𝑎

followed by 𝑏, the resulting internal state and document state
are the same as if we had replayed 𝑏 followed by 𝑎.

Proof. To replay 𝑎 followed by 𝑏, we first retreat/advance so
that the prepare state corresponds to 𝑎.parents, then apply 𝑎,
then retreat 𝑎, then retreat/advance so that the prepare state
corresponds to 𝑏.parents, then apply 𝑏. Applying 𝑎 inserts
a record into the internal state, and after retreating 𝑎 this
record has 𝑠𝑝 = NotInsertedYet and 𝑠𝑒 = Ins. Since 𝑏 is
concurrent to 𝑎, 𝑎 cannot be a critical version, and therefore
the internal state is not cleared after applying 𝑎. When 𝑏 is
applied, the presence of the record inserted by 𝑎 is the only
difference between the internal state when applying 𝑏 after 𝑎
compared to applying 𝑏 without applying 𝑎 first (by Lemma
C.4). When determining the insertion position in the internal
state for𝑏’s record based on𝑏’s index 𝑗 , the record inserted by
𝑎 does not count since it has 𝑠𝑝 = NotInsertedYet. There-
fore, 𝑏’s record is inserted into the internal state at the same
position relative to its neighbours, regardless of whether 𝑎
has been applied previously. By similar argument the same
holds for 𝑎’s record.
As explained in Section 3.3, the internal state uses a CRDT

algorithm to place the records in the internal state in a con-
sistent order, regardless of the order in which the events are
applied. The details of that algorithm go beyond the scope
of this paper. The key property of that algorithm is that the
final sequence of internal state records is the same, regard-
less of whether we apply first 𝑎 and then 𝑏, or vice versa. For
example, if we first apply 𝑎 then 𝑏, and if the final position
of 𝑏’s record in the internal state is after 𝑎’s record, then the
CRDT algorithm has to skip over 𝑎’s record (and potentially
other, concurrently inserted records) when determining the
insertion position for 𝑏’s record. This process never needs to
skip over a placeholder, since placeholders represent char-
acters that were inserted before the last critical version. It
only ever needs to skip over records for insertions that are
concurrent with 𝑎 or 𝑏; by the definition of critical versions,
all such insertion events appear after the last critical version
(and hence after the last internal state clearing) in the topo-
logical sort, and therefore they are represented by explicit
internal state records, not placeholders.

Now we consider the document state. WLOG assume that
the record inserted by 𝑎 appears at an earlier position in the
internal state than the record inserted by 𝑏 (regardless of the
order of applying 𝑎 and 𝑏). Let 𝑖′ be the transformed index
of 𝑎.op when 𝑎 is applied first, and let 𝑗 ′ be the transformed
index of 𝑏.op when 𝑏 is applied first.
Say we replay 𝑎 before 𝑏. When computing the trans-

formed index for 𝑏, the internal state record for 𝑎 has 𝑠𝑝 =

NotInsertedYet, and hence it is not counted when map-
ping 𝑏.op’s index 𝑗 to 𝑏’s internal state record. However, 𝑎’s
record is counted when mapping 𝑏’s internal state record
back to an index, since 𝑎’s record has 𝑠𝑒 = Ins and it appears
before 𝑏’s record. Therefore the transformed index for 𝑏.op is
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𝑗 ′ + 1 when applied after 𝑎. On the other hand, if we replay 𝑏
before 𝑎, the record for 𝑏 appears after the record for 𝑎 in the
internal state, so the transformed index for 𝑎 is 𝑖′, unaffected
by 𝑏. Thus, we have the situation as shown in Figure 1, and
the effect of the two insertions 𝑎 and 𝑏 on the document state
is the same regardless of their order. □

Lemma C.6. Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.op = Insert (𝑖, 𝑐) and 𝑏.op = Delete( 𝑗). If we start with some
internal state and document state and then replay 𝑎 followed
by 𝑏, the resulting internal state and document state are the
same as if we had replayed 𝑏 followed by 𝑎.

Proof. Since 𝑎 and 𝑏 are concurrent, the character being
deleted by 𝑏 cannot be the character inserted by 𝑎. We there-
fore only need to consider two cases: (1) the record inserted
by 𝑎 has an earlier position in the internal state than the
record updated by 𝑏; or (2) vice versa.
Case (1): If we replay 𝑎 before 𝑏, we first apply 𝑎, then

retreat 𝑎, then apply 𝑏 (and also retreat/advance other events
before applying, like in Lemma C.5). Applying 𝑎 inserts a
record into the internal state, and after retreating 𝑎 this
record has 𝑠𝑝 = NotInsertedYet and 𝑠𝑒 = Ins. When sub-
sequently applying 𝑏 we update an internal state record at a
later position. The record inserted by 𝑎 is not counted when
mapping 𝑏’s index to an internal record, but it is counted
when mapping the internal record back to a transformed in-
dex, resulting in𝑏’s transformed index being one greater than
it would have been without earlier applying 𝑎 (by Lemma
C.4). On the other hand, if we replay 𝑏 before 𝑎, the record
updated by 𝑏 appears after 𝑎’s record in the internal state, so
the transformation of 𝑎 is not affected by 𝑏. The transformed
operations therefore converge.

Case (2): If we replay 𝑏 before 𝑎, we first apply 𝑏, then re-
treat 𝑏, then apply 𝑎 (plus other retreats/advances). Applying
𝑏 updates an existing record in the internal state (possibly
splitting a placeholder in the process). Before applying 𝑏 this
record must have 𝑠𝑝 = Ins (by Lemma C.3), and it can have
either 𝑠𝑒 = Ins (in which case, the transformed operation for
𝑏 is Delete( 𝑗 ′) for some transformed index 𝑗 ′) or 𝑠𝑒 = Del (in
which case, 𝑏 is transformed into a no-op). After applying
and retreating 𝑏 this record has 𝑠𝑝 = Ins and 𝑠𝑒 = Del in any
case. We next apply 𝑎, which by assumption inserts a record
into the internal state at a later position than 𝑏’s record. If
we had 𝑠𝑒 = Del before applying 𝑏, the process of applying
and retreating 𝑏 did not change the internal state, so the
transformed operation for 𝑎 is the same as if 𝑏 had not been
applied, which is consistent with the fact that 𝑏 was trans-
formed into a no-op. If we had 𝑠𝑒 = Ins before applying 𝑏,
𝑏’s record is counted when mapping 𝑎’s index to an internal
record position, but not counted when mapping the internal
record back to a transformed index, resulting in 𝑎’s trans-
formed index being one less than it would have been without
earlier applying 𝑏 (by Lemma C.4), as required given that
𝑏 has deleted an earlier character. On the other hand, if we

replay 𝑎 before 𝑏, the record inserted by 𝑎 appears after 𝑏’s
record in the internal state, so the transformation of 𝑏 is not
affected by 𝑎, and the transformed operations converge. □

Lemma C.7. Let 𝑎 and 𝑏 be two concurrent events such that
𝑎.op = Delete(𝑖) and 𝑏.op = Delete( 𝑗). If we start with some
internal state and document state and then replay 𝑎 followed
by 𝑏, the resulting internal state and document state are the
same as if we had replayed 𝑏 followed by 𝑎.

Proof. WLOG we need to consider two cases: (1) the record
updated by 𝑎 has an earlier position in the internal state
than the record updated by 𝑏; or (2) 𝑎 and 𝑏 update the same
internal state record. The case where 𝑎’s record has a later
position than 𝑏’s record is symmetric to (1).

Case (1):We further consider two sub-cases: (1a) the record
that 𝑎 will update has 𝑠𝑒 = Ins prior to applying 𝑎; or (1b) the
record has 𝑠𝑒 = Del.

Case (1a): Say we replay 𝑎 before 𝑏. Before applying 𝑎, the
record that 𝑎 will update must have 𝑠𝑝 = Ins (by Lemma
C.3). After applying and retreating 𝑎, the record updated by
𝑎 has 𝑠𝑝 = Ins and 𝑠𝑒 = Del, and the transformed opera-
tion for 𝑎 is Delete(𝑖′) for some transformed index 𝑖′. We
subsequently apply 𝑏, which by assumption updates an in-
ternal state record that is later than 𝑎’s. 𝑎’s record is there-
fore counted when mapping the index of 𝑏.op to an internal
record position, but not counted when mapping the inter-
nal record back to a transformed index. If 𝑎 had not been
replayed previously, it would have been counted during both
mappings (by Lemma C.4). Thus, if the record updated by 𝑏
has 𝑠𝑒 = Ins, the transformed operation for𝑏 isDelete( 𝑗 ′−1),
where 𝑗 ′ is the transformed index of 𝑏’s operation if 𝑎 had
not been replayed previously, and 𝑗 ′ − 1 ≥ 𝑖′, as required. If
𝑏’s record previously has 𝑠𝑒 = Del, it is transformed into a
no-op. On the other hand, if we replay 𝑏 before 𝑎, the record
updated by 𝑏 appears later than 𝑎’s record in the internal
state, so the transformation of 𝑎 is not affected by 𝑏.

Case (1b): Say we replay 𝑎 before 𝑏. Before applying 𝑎, the
record that 𝑎 will update must have 𝑠𝑝 = Ins (by Lemma C.3),
and 𝑠𝑒 = Del by assumption. After applying and retreating 𝑎,
the record updated by 𝑎 remains in the same state (𝑠𝑝 = Ins,
𝑠𝑒 = Del), and the transformed operation for 𝑎 is a no-op.
When we subsequently apply 𝑏, the transformed operation is
therefore the same as if 𝑎 had not been applied, as required.
On the other hand, if we replay𝑏 before 𝑎, the record updated
by 𝑏 appears later than 𝑎’s record in the internal state, so the
transformation of 𝑎 is not affected by 𝑏.
Case (2): Before replaying both of the events, the record

that both events update may have 𝑠𝑒 = Ins or 𝑠𝑒 = Del, but
after applying the first event it definitely has 𝑠𝑒 = Del. The
second event will therefore be transformed into a no-op. The
same happens regardless of whether 𝑎 or 𝑏 is replayed first,
so the result does not depend on the order of replay of the
two events. □
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Lemma C.8. Given a valid event graph 𝐺 , replay(𝐺) is a
deterministic function. In other words, any two replicas that
have the same event graph converge to the same document
state and the same internal state.

Proof. The algorithms to transform an operation and to ap-
ply a transformed operation to the document state are by
definition deterministic. This leaves as the only source of
nondeterminism the choice of topologically sorted order (𝐺
is valid and hence acyclic, thus at least one such order exists,
but there may be several topologically sorted orders if 𝐺
contains concurrent events). We show that all sort orders
result in the same final document state.
Let 𝐸 = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩ and 𝐸′ = ⟨𝑒′1, 𝑒′2, . . . , 𝑒′𝑛⟩ be two

topological sort orders of 𝐺 = {𝑒1, 𝑒2, . . . , 𝑒𝑛}. Then 𝐸′ must
be a permutation of 𝐸. Both sequences are in some causal
order, that is: if 𝑒𝑖 → 𝑒 𝑗 (𝑒𝑖 happens before 𝑒 𝑗 , as defined in
Section 2.2), then 𝑒𝑖 must appear before 𝑒 𝑗 in both 𝐸 and 𝐸′.
If 𝑒𝑖 ∥ 𝑒 𝑗 (they are concurrent), the events could appear in
either order. Therefore, it is possible to transform 𝐸 into 𝐸′ by
repeatedly swapping two concurrent events that are adjacent
in the sequence.We show that at each such swapwemaintain
the invariant that the document state and the internal state
resulting from replaying the events in the order before the
swap are equal to the states resulting from replaying the
events in the order after the swap. Therefore, the document
state and the internal state resulting from replaying 𝐸 are
equal to those resulting from 𝐸′.
Let ⟨𝑒1, 𝑒2, . . . , 𝑒𝑖 , 𝑒𝑖+1, . . . , 𝑒𝑛⟩ be the sequence of events

prior to one of these swaps, and 𝑒𝑖 , 𝑒𝑖+1 are the events to be
swapped. Replaying the events in the prefix ⟨𝑒1, 𝑒2, . . . , 𝑒𝑖−1⟩
is a deterministic algorithm resulting in some document state
and some internal state. Next, we replay either 𝑒𝑖 followed by
𝑒𝑖+1, or 𝑒𝑖+1 followed by 𝑒𝑖 . Since 𝑒𝑖 and 𝑒𝑖+1 are concurrent,
it is not possible for only one of the two to be contained in
a critical version, and therefore no state clearing will take
place between applying these two events. If 𝑒𝑖 and 𝑒𝑖+1 are
both insertions, the resulting states in either order are the
same by Lemma C.5. If one of 𝑒𝑖 and 𝑒𝑖+1 is an insertion and
the other is a deletion, we use Lemma C.6. If both 𝑒𝑖 and 𝑒𝑖+1
are deletions, we use Lemma C.7. Finally, replaying the suffix
⟨𝑒𝑖+2, . . . , 𝑒𝑛⟩ is a deterministic algorithm. This shows that
concurrent operations commute. □

C.3 Satisfying the Strong List Specification
LemmaC.9. Let𝐺 be a valid event graph, let doc = replay(𝐺)
be the document state resulting from replaying 𝐺 , and let 𝑆 be
the internal state after replaying𝐺 . Then the 𝑖th element in doc
corresponds to the 𝑖th record with 𝑠𝑒 = Ins in the internal state
(counting placeholders as having 𝑠𝑒 = Ins, and not counting
records with 𝑠𝑒 = Del). Moreover, the set of elements in doc is
exactly the elements that have been inserted but not deleted in
𝐺 :

(∃𝑖 ∈ [0, 𝑛 − 1] : doc[𝑖] = (id, 𝑐)) ⇐⇒
(∃𝑎 ∈ 𝐺, 𝑖 ∈ N : 𝑎.id = id ∧ 𝑎.op = Insert (𝑖, 𝑐)) ∧

(�𝑏 ∈ 𝐺, 𝑖 ∈ N : 𝑏.op = Delete(𝑖) ∧
replay(Events(𝑏.parents)) [𝑖] = (id, 𝑐)).

Proof. Let 𝐸 = ⟨𝑒1, 𝑒2, . . . , 𝑒𝑛⟩ be some topological sort of 𝐺 ,
and assume that we replay 𝐺 in this order. By Lemma C.8
it does not matter which of the possible orders we choose.
We then prove the thesis by induction over 𝑛, the number
of events in 𝐺 . The base case is trivial: 𝐺 = {}, doc = ⟨⟩, so
there are no events, no records in the internal state, and no
elements in the document state.
Inductive step: Let 𝐸𝑘 = ⟨𝑒1, 𝑒2, ..., 𝑒𝑘⟩ with 𝑘 < 𝑛 be

a prefix of 𝐸. Since the set of events in 𝐸𝑘 also forms a
valid event graph, we can assume the inductive hypothesis,
namely that replaying 𝐸𝑘 results in a document correspond-
ing to the records with 𝑠𝑒 = Ins in the resulting internal
state, and the document contains exactly those elements
that have been inserted but not deleted by an operation
in 𝐸𝑘 . We now add 𝑒𝑘+1, the next event in the sequence 𝐸,
to the replay. We do this by transforming 𝑒𝑘+1 using the
internal state obtained by replaying 𝐸𝑘 , and applying the
transformed operation to the document state from 𝐸𝑘 . We
need to show that the invariant is still preserved in the fol-
lowing two cases: either (1) 𝑒𝑘+1 .op = Insert ( 𝑗, 𝑐) for some
𝑗 , 𝑐 , or (2) 𝑒𝑘+1.op = Delete( 𝑗) for some 𝑗 . We also have to
consider the case where the internal state is cleared, but we
begin with the case where no state clearing occurs.
Case (1): The set of elements that have been inserted but

not deleted grows by (𝑒𝑘+1.id, 𝑐) and otherwise stays un-
changed. The transformation of an insertion operation is
always another insertion operation. The document state is
thus updated by inserting the same element (𝑒𝑘+1.id, 𝑐), and
otherwise remains unchanged. Moreover, the transformed
index of that insertion is computed by counting the number
of internal state records with 𝑠𝑒 = Ins that appear before the
new record in the internal state, and the new record also has
𝑠𝑒 = Ins, and the 𝑠𝑒 property of no other record is updated,
so the correspondence between internal state records and
document state is preserved.
Case (2): The element being deleted is located at index 𝑗

in the document at the time 𝑒𝑘+1 was generated, which is
replay(Events(𝑒𝑘+1 .parents)). We compute this element by
retreating and advancing events until the prepare version
equals 𝑒𝑘+1.parents, and then finding the 𝑗th (zero-indexed)
record that has 𝑠𝑝 = Ins in the internal state. The records
with 𝑠𝑝 = Ins are those that have been inserted but not
deleted in events that happened before 𝑒𝑘+1, and thus the 𝑗 th
such record corresponds to replay(Events(𝑒𝑘+1 .parents)) [ 𝑗].
Before applying 𝑒𝑘+1, this record may have either 𝑠𝑒 = Ins
or 𝑠𝑒 = Del. If 𝑠𝑒 = Ins, we update it to 𝑠𝑒 = Del, and
transform 𝑒𝑘+1 into a deletion whose index is the number of
𝑠𝑒 = Ins to the left of the target record in the internal state;
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by the inductive hypothesis, this is the correct document
element to be deleted. If 𝑠𝑒 = Del before applying 𝑒𝑘+1, that
event is transformed into a no-op, since another operation
in 𝐸𝑘 has already deleted the element in question from the
document state. In either case, we preserve the invariants of
the induction.

If 𝑒𝑘+1 is a critical version, we clear the internal state and
replace it with a placeholder. By the definition of critical ver-
sion, every event in 𝐸𝑘 and 𝑒𝑘+1 happened before every event
in the rest of 𝐸. Therefore, after retreating and advancing
any event after 𝑒𝑘+1, any internal state record with 𝑠𝑒 = Del
will also have 𝑠𝑝 = Del 𝑘 for some 𝑘 > 0, and any internal
state record with 𝑠𝑒 = Ins will also have 𝑠𝑝 = Ins unless it
is deleted by an event after 𝑒𝑘+1. Since an internal state with
𝑠𝑒 = Del can never move to state 𝑠𝑒 = Ins, this means that
any records with 𝑠𝑒 = Del as of the critical version can be
discarded, since they will never again be needed for trans-
forming the index of an operation after 𝑒𝑘+1. Moreover, since
all of the remaining records have 𝑠𝑒 = 𝑠𝑝 = Ins as of the
critical version, and since the replay of the remaining events
in 𝐸 will never need to advance or retreat an event prior to
the critical version, all of the records in the internal state can
all be replaced by a single placeholder while still preserving
the invariants of the induction. □

Theorem C.10. The Eg-walker algorithm satisfies the strong
list specification (Definition C.2).

Proof. Given a valid event graph 𝐺 , let replay(𝐺) be the re-
play function based on Eg-walker, as introduced earlier. We
must show that there exists a list order lo ⊂ ID × ID that
satisfies the conditions given in Definition C.2. We claim
that this list order corresponds exactly to the sequence of
records and placeholders in the internal state after replaying
the entire event graph 𝐺 . By Lemma C.8, this internal state
exists and is unique. This correspondence is more apparent
if we assume a variant of Eg-walker that does not clear the
internal state on critical versions, but we also claim that
performing the optimisations in Section 3.5 preserves this
property.
To begin, note that the internal state is a totally ordered

sequence of records, and that (aside from clearing the internal
state) we only ever modify this sequence by inserting records
or by updating the 𝑠𝑝 and 𝑠𝑒 properties of existing records.
Thus, if a record with ID id𝑖 appears before a record with ID
id 𝑗 at some point in the replay, the order of those IDs remains
unchanged for the rest of the replay. We define the list order
lo to be the ordering relation among IDs in the internal state
after replaying 𝐺 using a Eg-walker variant that does not
clear the internal state. This order exists, is unique (Lemma
C.8), and is by definition transitive, irreflexive, and total, so
it meets requirement (2) of Definition C.2.
Let 𝑒 ∈ 𝐺 be any event in the graph, and let 𝐺𝑒 = {𝑒} ∪

Events(𝑒.parents) be the subset of 𝐺 consisting of 𝑒 and all
events that happened before 𝑒 . Note that 𝐺𝑒 satisfies the

conditions in Definition C.1, so it is also valid. Let doc𝑒 =

replay(𝐺𝑒 ) = ⟨(id0, 𝑐0), . . . , (id𝑛−1, 𝑐𝑛−1)⟩ be the document
state immediately after locally generating 𝑒 . Since replay is
deterministic (Lemma C.8), doc𝑒 exists and is unique.
By Lemma C.9, doc𝑒 contains exactly the elements that

have been inserted but not deleted in 𝐺𝑒 , which is require-
ment (1a) of Definition C.2. Also by Lemma C.9, the 𝑖th
element in doc𝑒 corresponds to the 𝑖th record with 𝑠𝑒 = Ins
in the internal state obtained by replaying𝐺𝑒 . Since any pair
of IDs that are ordered by the internal state derived from
𝐺𝑒 retain the same ordering in the internal state derived
from 𝐺 , we know that the ordering of elements in doc𝑒 is
consistent with the list order lo, satisfying requirement (1b)
of Definition C.2.

Finally, to demonstrate requirement (1c) of Definition C.2
we assume that 𝑒.op = Insert (𝑖, 𝑐), and we need to show
that doc𝑒 [𝑖] = (𝑒.id, 𝑐). Since 𝐺𝑒 contains only 𝑒 and events
that happened before 𝑒 , but no events concurrent with 𝑒 , we
know that immediately before applying 𝑒 , every record in
the internal state will have 𝑠𝑝 = Ins if and only if it has
𝑠𝑒 = Ins (because there are no events that are reflected in
the effect version but not in the prepare version 𝑒.parents).
Therefore, the set of records that are counted while map-
ping the original insertion index 𝑖 to an internal state record
equals the set of records that are counted while mapping
the internal record back to a transformed index. Thus, the
transformed index of the insertion is also 𝑖 , and therefore
the new element is inserted at index 𝑖 of the document as
required. This completes the proof that Eg-walker satisfies
the strong list specification. □
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