Chain Rule
Not to be confused with Chain Rule (Probability)
If$f(x) = g(h(x))$, then$fβ(x) = gβ(h(x)) \cdot hβ(x)$.
alternatively $π¦=π(π’)$Β andΒ $π’=π(π₯)$
i.e.Β $π¦=π(π(π₯))$
$$\frac{π}{ππ₯}[π(π(π₯))]=πβ(π(π₯))πβ(π₯)$$ Chain Rule extended
- IfΒ $π¦=π(π(β(π₯)))$:
$$\frac{π}{ππ₯}[π(π(β(π₯)))]=πβ²(π(β(π₯)))πβ²(β(π₯))ββ²(π₯)$$
Partial
Chain Rule with two independent variables
- $π₯=π(π’,π£)$ andΒ $π¦=β(π’,π£)$Β andΒ $π§=π(π₯,π¦)$
- i.e.Β $π§=π(π(π’,π£),β(π’,π£))$
$$\frac{βπ§}{βπ’}=\frac{βπ§}{βπ₯}\frac{βπ₯}{βπ’}+\frac{βπ§}{βπ¦}\frac{βπ¦}{βπ’}$$
- and
$$\frac{βπ§}{βπ£}=\frac{βπ§}{βπ₯}\frac{βπ₯}{βπ£}+\frac{βπ§}{βπ¦}\frac{βπ¦}{βπ£}$$