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Abstract. Seminal works by Cohn-Gordon, Cremers, Dowling, Garratt,
and Stebila [EuroS&P2017] andAlwen,Coretti andDodis [EUROCRYPT
2019] provided the first formal frameworks for studying the widely-used
Signal Double Ratchet (DR for short) algorithm.

In this work, we develop a new Universally Composable (UC) definition
FDR that we show is provably achieved by the DR protocol. Our definition
captures not only the security and correctness guarantees of theDR already
identified in the prior state-of-the-art analyses of Cohn-Gordon et al. and
Alwen et al., but also more guarantees that are absent from one or both
of these works. In particular, we construct six different modified versions
of the DR protocol, all of which are insecure according to our definition
FDR, but remain secure according to one (or both) of their definitions. For
example, our definition is the first to fully capture CCA-style attacks pos-
sible immediately after a compromise—attacks that, as we show, the DR
protocol provably resists, but were not fully captured by prior definitions.

We additionally show that multiple compromises of a party in a short
time interval, which the DR is expected to be able to withstand, as we
understand from its whitepaper, nonetheless introduce a new non-trivial
(albeit minor) weakness of the DR. Since the definitions in the litera-
ture (including our FDR above) do not capture security against this more
nuanced scenario, we define a new stronger definition FTR that does.

Finally, we provide a minimalistic modification to the DR (that we call
the Triple Ratchet, or TR for short) and show that the resulting protocol
securely realizes the stronger functionality FTR. Remarkably, the modifica-
tion incurs no additional communication cost and virtually no additional
computational cost. We also show that these techniques can be used to
improve communication costs in other scenarios, e.g. practical Updatable
Public Key Encryption schemes and the re-randomized TreeKEM proto-
col of Alwen et al. [CRYPTO 2020] for Secure Group Messaging.
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1 Introduction

Background. The Signal protocol is by far the most popular end-to-end secure
messaging (SM) protocol, boasting of billions of users. Based on the Off-The-
Record protocol [10], the core underlying technique of the Signal protocol is
commonly known as the Double Ratchet (DR) algorithm. The DR is beautifully
explained in the whitepaper [40] authored by the creators of Signal, Marlin-
spike and Perrin. The whitepaper also outlines the desired security properties
of the DR, and provides intuition on the design rationale for achieving them.
Indeed, in addition to standard security against an eavesdropper who may mod-
ify ciphertexts, the DR attempts to achieve (i) post-compromise security (PCS)
and forward secrecy (FS) with respect to leakages of secret state, (ii) resilience
to bad randomness, and (iii) immediate decryption (all at the same time). PCS
requires the conversation to naturally and quickly recover security after a leak-
age on one of the (or both) parties, as long as the affected parties have good
randomness (and the adversary remains passive while such recovery occurs) [20].
FS requires past messages to remain secure even after a leakage on one of the (or
both) parties. Resilience to bad randomness requires that as long as both parties’
secret states are secure (i.e., PCS has been achieved after any corruptions), then
the conversation should remain secure, even if bad randomness is used in craft-
ing messages. Finally, immediate decryption requires parties to—immediately
upon reception of ciphertexts—obtain underlying plaintexts and place them in
the correct order in the conversation, even if they arrive arbitrarily out of order
and if some of them are completely lost by the network (the latter is also known
as message-loss resilience).

However, despite the elegance and simplicity of the Double Ratchet, cap-
turing its security turned out to be not so straightforward. The first formal
analysis of the DR protocol (in fact, the whole Signal protocol) was provided by
Cohn-Gordon et al. in EuroS&P 2017 [18,19] (referred to as CCD+ henceforth).
However, this analysis left open several questions about the cryptographic secu-
rity and correctness achieved by the DR. Following in the footsteps of CCD+,
a more generic and comprehensive security definition of the DR was provided
by Alwen et al. in Eurocrypt 2019 [3] (referred to as ACD henceforth), with
close focus on the immediate decryption property of the DR protocol. They
provided a modular analysis with respect to game-based definitions proposed
therein. Indeed, they introduced new abstract primitives and composed them
into SM protocols (including the DR itself) that capture the above properties:
Continuous Key Agreement (CKA), Forward-Secure Authenticated Encryption
with Associated Data (FS-AEAD), and PRF-PRNGs. While the works of CCD+

and ACD significantly improved our understanding of the DR, as we observe in
this work, both definitional frameworks do not capture some of its security and
functionality properties.



786 A. Bienstock et al.

1.1 Our Contributions

In this work, our key aim is to develop a formal definitional framework that
captures the security and correctness properties of the DR protocol as completely
as possible. Moreover, we aspire for definitions that are simple to state and easy
to build on (e.g., imagine executing a Private Set Intersection Protocol on top
of the DR). More specifically:

– New Definitional Framework for the DR: We provide a new definition
FDR for the DR protocol, in the Universal Composability [14] (UC) frame-
work. Our definition captures all of the security and correctness guarantees
of the DR provided by ACD’s and CCD+’s definitions, but also more guaran-
tees that are absent from one or both of these works. To demonstrate this, we
construct six different (albeit somewhat contrived) modified versions of the
DR protocol, all of which are insecure according to our definition, but remain
secure according to ACD’s and/or CCD+’s definition. Some of these transfor-
mations are indeed based on analyzed (weaker) DR variants in the literature,
while others are based on novel observations. For example, our definition is
the first to fully capture CCA-style attacks that become possible on the DR
immediately after a party has been compromised—attacks that, as we show,
the DR provably resists, but were not fully captured by prior definitions. We
provide an overview of our new definition’s advantages in Sect. 1.3.

Finally, we prove that the DR protocol, as it is described in the whitepa-
per [40] (in its strongest form), securely realizes our ideal functionality FDR.
Our proof is modular and proceeds by expanding on ACD’s modular defini-
tional framework (see Appendix E). Note that we model part of the underly-
ing AEAD of the DR using a programmable ideal cipher to prove security in
the UC setting where an adversary can corrupt a party while a (heretofore
secure) ciphertext is in transit.

– Non-trivial (albeit minor) weakness of the DR: We find that multiple
compromises of a party in a short time interval, which the DR should be able
to withstand, as we understand from its whitepaper, nonetheless introduce a
new non-trivial (albeit minor) weakness of the DR. This weakness is allowed
in the definitions of both ACD and CCD+, as well as FDR, so we provide
a new stronger definition FTR that does not allow it. We summarize this
compromise scenario in Sect. 1.4.

– Achieving stronger security: Finally, we complement the above weakness
by providing a minimalistic modification to the DR and prove the result-
ing protocol secure according to the stronger definition FTR. We call this
new protocol the Triple Ratchet (TR) as it adds another “mini ratchet” to
the public ratchet in the DR Protocol. Remarkably, the modification incurs
no additional communication cost and virtually no additional computational
cost. We provide an overview of the TR in Sect. 1.5.
We believe that the techniques realized here are also likely to find other
applications. For instance, in Appendix F, we show that our techniques
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can be used to improve current practical Updatable Public Key Encryption
(UPKE) constructions [4,34], reducing their communication cost by an addi-
tive factor of |G|, where |G| is the number of bits needed to represent the size
of the (CDH-hard) group used in the construction, without any additional
computational cost. Furthermore, the technique yields an improvement to
the communication cost of the re-randomized TreeKEM (rTreeKEM) proto-
col of Alwen et al. [4]—specifically, improving the communication cost by up
to roughly an additive factor of |G| · n, where n is the number of users in the
group.

1.2 High-Level Summary of the Double Ratchet and Its Security
Properties

Before elaborating on our results in the subsequent sections, we first give a high-
level overview of the Signal Double Ratchet and its security properties which we
capture in our definition. For another detailed description we refer to the Double
Ratchet whitepaper [40]. Readers familiar with the Double Ratchet algorithm
could easily skip this section.

We note that although we here describe the double ratchet specifically in
terms of its real-world implementation [40], our paper still breaks it down into
modular pieces which can be instantiated in several different ways, as in ACD.
For the purpose of our paper, we assume that the two participants P1 and
P2 share a common secret upon initialization. In Signal, this is achieved via
the X3DH key exchange protocol [41], but we consider this out of scope for
our study of the double ratchet. Using their initial shared secret, P1 and P2

can derive the initial root key σ which seeds the public ratchet. Furthermore,
upon initialization P2 also holds some secret exponent x0 and P1 holds the
corresponding public value gx0 . Once the initialization process completes, the
ratcheting session begins.

At its core, the double ratchet has two key components: the outer public-key
ratchet, and the inner symmetric-key ratchet (often referred to as simply the
public and symmetric ratchets, respectively). ACD abstract out the symmet-
ric ratchet as their FS-AEAD primitive, the update mechanism of the public
ratchet as their PRF-PRNG primitive, and the means by which shared secrets
are produced to update the public ratchet as their CKA primitive. The goal of
the double ratchet is to provide distinct message keys to encrypt/decrypt each
new message. For each message the same message key is derived by both parties
using a symmetric chain key which itself is derived from the aforementioned
root key. Naturally, this results in a key hierarchy with the root key at the top,
chain keys at an intermediate layer, and message keys at the bottom. Observe
a graphical depiction of this hierarchy in Fig. 1. In the Signal double ratchet,
Diffie-Hellman key exchange is used to “ratchet forward” the root key, which
can then be used to establish corresponding symmetric chain keys. Message
keys are then derived from the current (newest) chain key, where chain keys are
updated deterministically such that multiple messages can be sent in a row before
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a response, and no matter which of these messages is the first to arrive, the
recipient can always compute its corresponding message key immediately. We
now introduce the concept of asynchronous epochs before describing the two
ratchets and the primary properties which they achieve:

Asynchronous Sending Epochs. In the double ratchet, the parties P1 and P2

asynchronously alternate sending messages in epochs (as termed in [3]): Assume
that P1 starts the conversation, sending in epoch 1 at least one message. Then
once P2 receives one of these messages, she sends messages in epoch 2. Further-
more, once P1 receives one of these message, she starts epoch 3, and so on. We
emphasize that these sending epochs are asynchronous – for example, even if
P2 has started sending in epoch 2, if P1 has not yet received any such epoch
2 messages and wants to send new messages, she will still send them in epoch
1. Not until she finally receives one of P2’s epoch 2 messages will she send new
messages in epoch 3.

Public Ratchet. The public ratchet forms the backbone of the double ratchet
algorithm. Parties update the root key using public-key cryptography (i.e. Diffie-
Hellman secrets) every time a new epoch is initiated: if P1 wishes to start a new
epoch, she must first update the root key using the Diffie-Hellman public value
from P2’s latest epoch (or initialization). After deriving a new chain key from
the root key, P1 can send multiple separate messages in a row—this involves
deriving a new message key for each message via the symmetric ratchet, as
explained below.

We now describe the root key update process in more detail. To start a
new epoch t, P1 samples a new private exponent xt and corresponding pub-
lic value gxt . Next, she uses the public value received from P2’s latest epoch
(or initialization), say gxt−1 , to compute a shared secret (gxt−1)xt = gxt−1xt .
Then, P1 uses a two-input Key Derivation Function (KDF) to update the cur-
rent root key and derive a new chain key in one go. That is, she computes
(σt, wt,1) ← KDF(σt−1, g

xt−1xt). Observe that even if P1’s state was leaked
before this update, as long as the parties used good randomness in sampling
their Diffie-Hellman keys, the new root key and chain key will be secure. This is
the key to achieving PCS. Symmetrically, even if P1 uses bad randomness when
performing this update, as long as if σt−1 was secure, then the new root key
and chain key will be secure. Furthermore, root keys are clearly forward secret,
from the security of the KDF and the fact that new Diffie-Hellman secrets are
sampled independently of past ones.

P1 includes in every message of the new epoch the fresh public share gxt to
allow P2 to compute the new shared secret gxt−1xt that is used to update the
root key, no matter which message of the epoch she receives first. This in part is
what provides for immediate decryption (and message loss resilience). When P2

receives a message in P1’s new epoch, she recomputes the same above steps, i.e.
she computes σt by first computing (gxt)xt−1 = gxt−1xt where xt−1 is P2’s own
private share, followed by the same KDF computation. Once P2 wishes to start
her own new epoch, she generates another Diffie-Hellman pair (xt+1, g

xt+1) to
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Fig. 1. Sample Double Ratchet key evolution. In this depiction, P1 sends and
P2 receives in epoch 1, followed by P2 sending and P1 receiving in epoch 2,
and so on. As explained in the main body, initial symmetric chain keys wi,1 for
each epoch i are derived first by the sender, then also by the receiver, using the
shared root keys σi and asynchronously exchanged shared secrets (via DDH).
Then, updated symmetric chain keys wi,j and message keys Ki,j are derived
deterministically from wi,1.

ratchet the root key forward (σt+1, wt+1,1) ← KDF(σt, g
xtxt+1). Essentially, P2

has refreshed her component of the Diffie-Hellman shared secret while reusing
P1’s value from the previous epoch. Now, when P1 receives a message for this
epoch and again wishes to start a new one, she would similarly need to sample
a new Diffie-Hellman share xt+2. This process can continue asynchronously for
as long as the session is active.

Symmetric Ratchet. The main purpose of the symmetric ratchet is to produce
single-use symmetric keys for message encryption. When a party wishes to send
(or receive) the next (ith) message in some epoch t, they derive a distinct message
key Kt,i from the symmetric chain key wt,i and simultaneously update the chain
key. This is done by applying a KDF as follows: (wt,i+1,Kt,i) ← KDF(wt,i) (if
the KDF requires two inputs, a fixed value may be used to fill the other input).
Observe that the symmetric ratchet is clearly forward secret from the security
of the KDF. Note however that the symmetric ratchet does not have PCS due
to its deterministic nature.

So, if P1 just started a new epoch then she first computes initial symmetric
chain key wt,1 for the epoch as above. To derive a message key, P1 puts this
new chain key through the KDF to compute (wt,2,Kt,1) ← KDF(wt,1). If P1

wishes to send a second message, then she can derive (wt,3,Kt,2) ← KDF(wt,2).
When P2 receives these messages from P1, she can repeat the key derivation
in the same way as P1 and use the subsequent message keys to decrypt the
messages, no matter the order in which they arrive. The deterministic nature of
the symmetric ratchet, along with including the public ratchet values in every
message as above, provides immediate decryption.
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1.3 High-Level Summary of Our DR Definition’s Strength
over Prior Notions

In Sect. 2 we fully formalize our new definition for the DR in the UC framework,
FDR, and provide thorough discussion on it. Then in Appendix E, we show that
the DR UC-realizes FDR (in the programmable ideal cipher model). Intuitively,
FDR captures all of the properties described in the last section, including all
of those captured by the definitions of ACD and CCD+. Here we emphasize
several properties which FDR guarantees, but at least one of ACD’s and CCD+’s
definitions do not. We do so by providing six distinct transformations to the
original DR protocol (denoted as Ti(DR) for i ∈ [6]), showing their natural
vulnerabilities here, and their insecurity according to FDR, but security according
to at least one of ACD’s (transformations 1 − 4) and CCD+’s (transformations
4−6) definitions. We show this formally in Appendix D.2. Although some of these
transformations may be seen as artificial, they emphasize that our definition is
stronger than those of ACD and CCD+. Below we use the formalization of
symmetric and public ratchets as done by ACD and also adapted by us – the
symmetric ratchet is abstracted out as an FS-AEAD scheme and the public
ratchet as a CKA scheme. We defer these definitions to Sect. 3 and Appendix B.

T1: Postponed FS-AEAD Key Deletion: This transformation slightly modifies
the handling of symmetric ratchet secrets. In particular, when a party receives a
new message for its counterpart’s next epoch, it does not immediately delete its
(no longer needed) symmetric ratchet secrets from its previous sending epoch.
Instead, it waits to delete these secrets until it starts its next sending epoch
(i.e., sends its next message). In that case, an injection attack can be launched
as follows: only focusing on the symmetric ratchet, suppose that for a sending
epoch t, P1 derives (wt,2,Kt,1) ← KDF(wt,1) and sends an encrypted message
using Kt,1, that is then received by P2. Then P2 sends a message in epoch t + 1,
which is received by P1. Observe that unlike in (the strongest version of) the DR,
T1(DR) keeps wt,2 in P1’s memory even after receiving this epoch t + 1 message
from P2. Now if P1 is compromised then the attacker obtains wt,2. Using this it
can now launch an injection attack for P1’s sending epoch t (not just P1’s next
sending epoch, t + 2) by encrypting any arbitrary message of its choice using
the next message key (·,Kt,2) ← KDF(wt,2) and sending that to P2. Note that
each time a sending epoch is started in the protocol, the information about how
many messages were sent in the immediately past sending epoch is included.
Nonetheless, that does not thwart this attack, because it is launched even before
P1 starts the next sending epoch.

Although this transformation is perhaps artificial, one can imagine scenarios
in which the relative timing of messages sent by the two parties is important.
Perhaps more importantly, it is clearly less secure than the standard (most secure
version of) DR, but, remarkably, the version described by ACD is indeed T1(DR).
Furthermore, as evident by ACD’s security proof, their definition therefore does
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not require resistance against this attack; intuitively making our (and CCD+’s)
definition stronger than theirs in this respect.

T2: Postponed CKA Key Deletion: A similar problem arises if the keys from the
public ratchet are kept for too long. The transformed protocol works as follows:
suppose that in starting a new sending epoch t, P2 samples a secret exponent
xt and combines it with the public ratchet message of P1’s prior sending epoch,
gxt−1 , to compute It = gxt−1xt . Then, P2 proceeds to send several messages
using It (and the root key for the KDF, as described in Sect. 1.2) as normal.
When receiving a message for the first time in sending epoch t of P2, P1 uses her
stored secret exponent xt−1 and combines it with P2’s public ratchet message
gxt to compute It. However, at this point, instead of deleting It (as done in the
normal DR protocol), P1 saves it in T2(DR). Now assume that P1 receives all of
P2’s epoch t messages. Then, when P1 again switches to a new sending epoch
she generates a new It+1 (deleting the old It). An attack can be executed on
T2(DR), by simply corrupting P1 before the start of epoch t + 1, and then using
the leaked It to decrypt the already delivered messages sent by P2 in epoch t
– thus breaking forward security. Note: this also requires another corruption of
P2 before she sends messages in the attacked epoch t, to obtain the root key
for the KDF. ACD’s definition explicitly prevents querying the challenge oracle
immediately after corruptions, and thus does not require resistance against this
attack. CCD+’s model does explicitly require resistance against this attack. This
transformation may seem artificial, but clearly allowing the adversary to decrypt
old messages should not be allowed in any formal model of the DR, and in fact
is not allowed in FDR.

T3: Eager CKA Randomness Sampling: If the secret-exponent of a public-ratchet
is sampled too early, then that makes the protocol vulnerable. For example, con-
sider T3(DR) in which P1 samples the exponent xt for the next sending epoch t
when still in receiving epoch t − 1. An attacker may compromise P1 to obtain
xt (and the root key) at this stage and use that to decrypt the messages sent in
the next epoch t, thereby breaking PCS. ACD’s definition does not require resis-
tance against this attack, while FDR does, because their definition does not allow
querying the challenge oracle immediately after corruptions. It is worth pointing
out that the Double Ratchet whitepaper [40] and CCD+ present T3(DR) and its
early sampling as their primary description of the DR, though the whitepaper
later suggests deferring randomness sampling until actually sending for better
security, which we choose to model. However, the security model itself of CCD+

only analyzes the key exchange component of the DR and we believe that it could
indeed be composed with an AEAD scheme to avoid the weakness of T3(DR).
However, this needs to be carefully done, and not according to their description
of the full DR protocol.

T4: Malleable Ciphertexts: If the protocol does not provide a strong non-
malleability guarantee, then the DR protocol could suffer from a mauling attack
according to our weaker definition FDR. More specifically, if the root key is leaked,
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and T4(DR) uses a weak mechanism to update the public ratchet (note: the DR
public ratchet should provide PCS here), there may exist attacks which, for exam-
ple, can successfully maulDR ciphertexts encrypting m into new ones that decrypt
to m+1. This becomes evident when we prove theDR protocol secure according to
FDR, which is required to protect against such an attack, as we need to rely on such
a non-malleability property. Indeed, the DR seems to require modelling the public
ratchet KDF as a random oracle and that the Strong Diffie-Hellman assumption
(StDH) is secure (i.e., given random and independent ga, gb, and oracle access to
ddh(ga, ·, ·) which on input group elements X,Y checks if Xa = Y , it is hard to
compute gab), in order to realize FDR. To provide evidence for this requirement:
the ciphertexts and key material known to the adversary in the above scenario are
almost identical to that of Hashed ElGamal encryption, for which all analyses of
its CCA-security of which we are aware use the same assumptions [1,21,39]. We
do not rule out a security proof from weaker assumptions, however, it seems that
using a group in which only DDH is hard, and not, for example, StDH, for the
public ratchet could lead to an attack like the above. ACD’s definition does not
require resistance against such an attack since it does not allow injections after
corruptions; therefore, their security proof only relies on DDH.

CCD+’s definition also does not completely cover mauling attacks, since it
only analyzes the key exchange component of the DR, not any actual message
transmission. Therefore, if one composes a key exchange protocol secure with
respect to CCD+’s definition with a non-authenticated encryption scheme, it
would not provide the non-malleability guarantees required by FDR.

T5: CKA Bad Randomness Plaintext Trigger: The DR is very resilient to attacks
against its source of randomness. However, in T5(DR), if a party samples a certain
string of random bits, say the all-0 string, then it (rather artificially) sends the
rest of its messages in the conversation as plaintext. In our (and ACD’s) model,
which require security even if the adversary can supply the parties with random
bits each time they attempt to sample randomness, such a protocol is clearly
insecure. However, CCD+’s model only allows randomness reveals of uniformly
sampled random bits. Thus sampling the all-0 string occurs with negligible prob-
ability (if we assume bit strings of poly(λ) length), so security in CCD+’s model
is retained. Although this attack is quite artificial, [5] note that attacks on ran-
domness sources (e.g., [31]) and/or generators (e.g., [17,51]) are not captured
by randomness reveals, but are captured by randomness manipulation as in our
model. Furthermore, [5] show that including randomness manipulations has a
concrete effect on protocol construction, particularly in Secure Messaging.

T6: Removed Immediate Decryption: Finally, T6(DR) changes the DR to include
the public ratchet message as part of only the first ciphertext of an epoch. It
is thus pretty simple to violate the immediate decryption property required by
our ideal functionality: First have P1 send two messages m1,m2 in a new epoch
t, generating ciphertexts c1 and c2. Then, attempt to deliver c2 to P2 (before
c1). Since c2 does not include the public ratchet message of the epoch, P2 will
be unable to decrypt it to obtain m2. While FDR does in fact require immediate
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decryption, CCD+’s model does not require it (nor correctness more generally),
so T6(DR) satisfies all formal requirements of their model. ACD’s model does in
fact require immediate decryption.

Although this too may be an artificial transformation, immediate decryption
is an important practical property of the DR, and one of the DR’s main novel-
ties is obtaining immediate decryption at the same time as FS and PCS. Fur-
thermore, properly modelling immediate decryption allows subsequent work to
understand it, and further improve upon the DR with the requirement in mind.
Indeed, many of the works which we are aware of [7,24,32,34,45], besides [3],
which try to improve the DR do not consider immediate decryption in their
security models or constructions, arguably thrusting these works outside of the
practical realm.

1.4 High-Level Summary of the DR’s Minor Weakness

Here we show a scenario that introduces a new non-trivial (albeit minor) weak-
ness of the DR which demonstrates a gap between the security guarantees that
the DR should achieve according to our understanding of its whitepaper, and
those which it actually does achieve. The attack utilizes two compromises of a
party in a short time interval, and stems from the fact that a party needs to
hold on to the secret exponent xt for the public ratchet that it generates in a
sending epoch t until it receives a message from its counterpart’s next sending
epoch t + 1. Indeed secret exponent xt is needed until this point because the
other party uses its public component to encrypt messages in epoch t + 1. For
example, consider a setting in that party P1 is about to start a sending epoch t.
At this point P1’s state has gxt−1 and P2 has xt−1. Now when the sending epoch
commences, P1 samples fresh secret (random) exponent xt and combines that
with gxt−1 to derive the CKA key It = gxt−1xt , which she then combines with the
root key σt to derive first the symmetric chain key wt,1, followed by message key
Kt,1. Note that if xt is truly random, then It and thus wt,1 and all subsequent
message keys Kt,i should be secure. In this epoch P1 sends gxt to P2, who then
derives the same key It by computing (gxt)xt−1 , and subsequently Kt,1. In the
next epoch, P2 becomes a sender. Then P2 samples a fresh xt+1 to derive a new
CKA key It+1 = (gxt)xt+1 and sends gxt+1 to P1. Now, P1 needs to compute It+1

as (gxt+1)xt . To execute this step P1 must have stored xt throughout its sending
epoch. The attack exploits this by compromising P1 twice in a short interval:

– first compromise P1 before starting the sending epoch t to obtain the root
key σt;

– then compromise P1 at any time after she sends a few messages (at least one),
but before she receives any epoch t + 1 messages, to obtain xt, and thus It;

and then combine σt and It to derive wt,1, given which all messages within P1’s
sending epoch t are vulnerable, including the ones that were sent between the
two corruptions. Intuitively, this breaks PCS with respect to the first corruption,
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since as noted above, if xt is truly random, then the corresponding message keys
should be secure, as well as FS with respect to the second corruption. For more
details we refer to Appendix C.2.

In Sect. 2, we provide a new ideal functionality, FTR, that strengthens FDR in
order to capture security against the above compromise scenario. We note that
both the definitions of ACD and CCD+ also did not capture this scenario.

1.5 High-Level Summary of the Triple Ratchet

Finally, we provide a minimalistic modification of the DR, which we call the
Triple Ratchet protocol, or simply TR, with virtually no overhead over the DR.
This protocol is secure against the compromise scenario provided in the previous
section and thus realizes our stronger ideal functionality, FTR. The TR protocol
modifies the underlying public ratchet in a way that the sampled secret expo-
nent is deterministically updated after starting a sending epoch; thus, adding a
“mini ratchet” on top of Signal’s public ratchet. In particular, using the nota-
tion from above, in the modified public ratchet, a party (say P1) after sampling
secret exponent xt, and deriving It = (gxt−1)xt , sends gxt as the public ratchet
message, but stores x′

t = xt · H(It) instead of xt. Once P2 receives gxt , she
also derives It and computes gx

′
t = gxt·H(It) that she uses for the next pub-

lic ratchet. In particular, in the next epoch when P2 becomes the sender, she
samples a fresh secret exponent xt+1, and uses the key It+1 = gx

′
txt+1 . P2 sends

gxt+1 , upon receiving which P1 can compute It+1 as (gxt+1)x
′
t , but P2 only stores

x′
t+1 = xt+1 ·H(It+1), and so on. Assuming H to be a random oracle, or instead,

circular-security of ElGamal encryption, we can show that given x′
t, It is com-

pletely hidden, rendering the attack of the previous section useless. Note that
the communication cost remains the same for the modified protocol, that is one
group element. The computation cost increases only slightly, specifically exactly
once per epoch. We also note that, the alternate CKA scheme based on generic
KEMs proposed by [3] seems to achieve this security too, albeit with doubling
the communication cost.

Furthermore, as we show in Appendix F, our efficient modification can also
be applied to practical UPKE schemes, reducing their communication by an
additive factor of |G|, where |G| is the number of bits needed to represent the
size of the (CDH-hard) group used in the schemes. Using the modified UPKE
scheme, we can reduce the communication of, e.g., the rTreeKEM scheme [4]
used for Secure Group Messaging by an additive factor of |G| · n, where n is the
number of users in the group.

1.6 Other Related Work

Canetti, Jain, Swanberg, and Varia [16] also recently studied the security of the
Signal protocol in the UC framework. Kobeissi, Bhargavan, and Blanchet [37]
use automated verification tools to provide symbolic and computational proofs
for a simplified variant of the Signal protocol.
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Following the first formal analysis of Signal by CCD+, researchers proposed
a number of protocols that provided stronger security than the DR [5,7,25,32,
34,45]. ACD however observed that in the process of strengthening security, all
such protocols suffer from steep efficiency costs and loss of immediate decryption,
rendering these protocols impractical for real-world use.

Jost, Maurer and Mularczyk [35] analyzed ratcheting with the Constructive
Cryptography framework [42]. They aimed to capture the security and compos-
ability of various sub-protocols, such as FS-AEAD, used in the construction of
larger ratcheting protocols.

More recently, there has also been work on the X3DH key exchange protocol
used in Signal, providing generalized frameworks that allow for post-quantum
secure versions [11,13,22,30], and analyzing its offline deniability guarantees [11,
22,30,48–50].

1.7 Summary of the Rest of the Paper

In Sect. 2 we provide our UC-based ideal functionalities in Fig. 2. We put a lot
of discussions around it for reader’s convenience, and along the way explain
why the transformations of Sect. 1.3 are insecure according to our definitions. In
Sect. 3, we define the CKA primitive (capturing the public ratchet) and formally
detail the two public ratchets used in the DR and TR (as described in Sect. 1.5),
respectively, while only proving secure the latter.

Due to space limitations we defer the rest of the technical sections to the sup-
plementary body. In Appendix A we provide the preliminaries containing mostly
definitions borrowed from literature. In Appendix B we provide the other build-
ing blocks required for the DR (and TR), i.e., (i) we explain the (informal) proper-
ties required from the KDF used for the public ratchet (which we model as a ran-
dom oracle to handle corruptions with messages in-transit; see Appendix B.1 for
more discussion on this), (ii) we introduce FS-AEAD (formalizing the symmetric
ratchet part), and (iii) we formally provide additional details on CKA, namely
the security proof for the weaker public ratchet used in the DR. In Appendix C
we detail the constructions, from the proper CKA and FS-AEAD notions, of pro-
tocols DR (Double Ratchet) and TR (Triple Ratchet), which use essentially the
same presentation as ACD (fixing their error as described in T1(DR) and mod-
elling the KDF as a random oracle). We also formally demonstrate the weakness
of the DR with respect to our stronger functionality FTR. In Appendix D we pro-
vide the full technical details of our transformations to the DR, their insecurity
with respect to our functionality FDR, and their security with respect to ACD’s
and/or CCD+’s notion. In Appendix E we provide the security analyses of the
Double Ratchet DR and Triple Ratchet TR, formalized in Theorem 5, which
are essentially the same as that presented by ACD (but also using standard
non-malleability arguments and programming the random oracle to handle cor-
ruptions with messages in-transit; again, see Appendix B.1). In Appendix F,
we show how the techniques used in the TR can also be used to reduce
the communication costs of practical UPKE schemes. Finally, Appendix G
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contains technical descriptions of the UC framework, mostly borrowed from the
literature, but adapted to our setting.

2 Defining Security of the Double Ratchet

In this section, we focus on obtaining an ideal functionality FDR that captures, as
completely as possible, the security provided by the Double Ratchet algorithm.
We emphasize that we study the security provided by the strongest implemen-
tation of the DR of which we are aware. For more on this, see Appendix D. We
also provide an ideal functionality FTR that captures the security of our stronger
TR protocol. Both functionalities are provided in Fig. 2.

FDR and FTR

Notation: The ideal functionality interacts with two parties P1,P2, and an ideal
adversary S. The ideal functionality initializes lists of used message-ids P1.M, in-
transit messages P1.T, adversarially injected message-ids P1.I,

and vulnerable messages P1.V sent by P1 to P2 to φ. Analogously, lists P2.M,P2.T,

P2.I and P2.V are also initialized to φ. The ideal functionality also initializes

leakage flags of both P1 and P2 for their corresponding (i) public ratchet secrets:
P1.PLEK,P2.PLEK, (ii) current sending epoch symmetric secrets: P1.CUR SLEK,
P2.CUR SLEK, and (iii) previous sending epoch symmetric secrets: P1.PREV SLEK,
P2.PREV SLEK, all to 0. Further, it initializes bad-randomness flags P1.BAD,P2.BAD
and takeover possible flags P1.TAKEOVER POSS,P2.TAKEOVER POSS to 0. Finally, it
initializes the turn flag TURN as ⊥.

– On input (sid, SETUP) from P where P ∈ {P1,P2}: Send (sid, SETUP,P) to
S. When S returns (sid, SETUP) then set TURN ← P, and send (sid, INITIATED)
to both P1 and P2. Ignore all future messages until this step is completed for
sid. Once this happens P can send the first message.

– On input (sid,mid, SEND, m) from P ∈ {P1,P2}:
1. Ignore if mid ∈ P.M.

2. If P̄.CUR SLEK ∨ (P.V �= ∅) then P.V ∪ {(sid,mid, m)}
3. If New(P, TURN,P.T)a then set (i) P.PLEK ← P.BAD, (ii) P.CUR SLEK ←

P̄.CUR SLEK∧(P.PLEK∨P̄.PLEK), and (iii) P̄.TAKEOVER POSS ← P.CUR SLEK.
4. Add mid to P.M; if mid /∈ P.I then add (sid,mid, IN TRANSIT, m,P.CUR SLEK

, TURN) to P.T; and pass (sid,mid, IN TRANSIT,P, |m|, m′) to S where m′ ←
m if P.CUR SLEK and ⊥ otherwise.

– On input (sid,mid, DELIVER,P, m′) from S where P ∈ {P1,P2}:
1. Find (sid,mid, IN TRANSIT, m, β, γ) ∈ P.T and remove it from P.T. Skip

rest of the steps if no such entry is found.
2. If γ = P then set (i) TURN ← P̄, (ii) P.T ← Flip(P,P.T),b (iii)

P.PREV SLEK ← 0, (iv) P̄.PREV SLEK ← P̄.CUR SLEK, (v) P̄.CUR SLEK ← 0,

(vi) P̄.PLEK ← 0, (vii) P.TAKEOVER POSS ← 0, and (viii) P̄.V ← ∅.

3. If β = 1 then set m ← m′. Send (sid,mid, DELIVER, m) to P̄.

– On input (sid, LEAK,P) from S where P ∈ {P1,P2}:
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1. If ¬New(P, TURN,P.T) then set P.CUR SLEK ← 1, P.PLEK ← 1, and
P̄.TAKEOVER POSS ← 1.

2. If ¬New(P̄, TURN, P̄.T) then set P̄.CUR SLEK ← 1.
3. If TURN = P̄ then set P̄.PREV SLEK ← 1.
4. If New(P, TURN,P.T) ∨ (¬New(P̄, TURN, P̄.T) ∧ TURN = P̄) then set

P.TAKEOVER POSS ← 1.

5. Execute P̄.T ← Unsafe(P̄.T)c and P.T ← Unsafe′(P.T,P.V).d then send

P̄.T and P.V to S.
– On input (sid, BAD RANDOMNESS,P, ρ) from S where ρ ∈ {0, 1} and P ∈

{P1,P2}: Set P.BAD ← ρ.
– On input (sid,mid, INJECT,P, m, δ, γ) from S:

1. Skip if (mid ∈ P.I∪P.M)∨¬(P.TAKEOVER POSS∨P.PREV SLEK∨P.CUR SLEK).
2. If P.TAKEOVER POSS ∧ δ then forward all subsequent incoming messages

from P̄ to S and from S for P̄ directly to P̄. Also, remove from P.T
all elements of the form (·, ·, IN TRANSIT, ·, ·,P) and drop all subsequent
incoming messages for P̄ generated by the ideal functionality (i.e., do not
send them to P̄), except the ones generated according to the DELIVER

command.
3. Otherwise, add mid to P.I and add to P.T (i) if TURN = P̄ ∨ ¬P.CUR SLEK

then (sid,mid, IN TRANSIT, m, 1, ⊥), (ii) if TURN = P∧ ¬P.PREV SLEK then
(sid,mid, IN TRANSIT, m, 1,P), and (iii) else (sid,mid, IN TRANSIT, m, 1, γ).

a New(P, TURN,P.T) outputs 1 if we have TURN = P and for all
(sid,mid, IN TRANSIT, m, β, γ) ∈ P.T we have γ �= P; otherwise output 0.

b Flip(P,P.T) for each (sid,mid, IN TRANSIT, m, β,P) ∈ P.T replaces it with
(sid,mid, IN TRANSIT, m, β, ⊥).

c Unsafe(P.T) for each (sid,mid, IN TRANSIT, m, β, γ) ∈ P.T replaces it with
(sid,mid, IN TRANSIT, m, 1, γ).

d Unsafe′(P.T,P.V) for each (sid,mid, m) ∈ P.V, if there is a cor-
responding (sid,mid, IN TRANSIT, m, β, γ) ∈ P.T, replaces it with
(sid,mid, IN TRANSIT, m, 1, γ).

Fig. 2. The ideal functionalities FDR and FTR, respectively.

2.1 Honest Execution

We start with a simplified view of the functionality where only the first three
commands, namely SETUP, SEND, and DELIVER are executed. In other words, we
consider a restricted view of the ideal functionality where leakage, bad random-
ness and injection attacks are not allowed. The adversary is still allowed to delay,
reorder, and drop messages at will.

SETUP Command. This command can be initiated by either P = P1 or P =
P2, and allows for initializing the communication channel between P and P̄.
Looking ahead, in the real-world protocol, this initialization will involve sharing
cryptographic secrets between the real-world P and real-world P̄, then properly
initializing their states using these secrets. While the actual Signal protocol



798 A. Bienstock et al.

uses the X3DH key exchange [41] for this, the focus of our work is to analyze
the security and functionality of the double ratchet algorithm, and not X3DH.
Therefore, we present a simple description for the SETUP command, that may be
stronger than what X3DH achieves, but nonetheless suffices for our purposes.

We note that both P1 and P2 must receive (sid, INITIATED) before the com-
munication between them can proceed. Turn status flag TURN is set to the ini-
tiator P to denote that P will be the first party to send a message.

SEND Command. This command allows P ∈ {P1,P2} to send a message m, under
a unique assigned message id mid, to P̄. Naturally, the ideal functionality only
allows P to send one message under each such mid, which it ensures by aborting
in Step 1 if mid is already in list P.M, and subsequently adding mid to P.M in Step 4
otherwise. Now, this message might be dropped or delayed while in transit. Thus,
at this point, the message is only added to the in-transit list P.T (Step 4) and
the ideal-functionality waits for the instruction from the ideal-world adversary
on when this message is to be delivered (if at all).

Observe that the last element of each tuple in P.T is TURN: the turn sta-
tus when P attempted to send this message (i.e., when it was added to P.T).
Looking ahead, this element is used in helper function New(P, TURN,P.T) within
SEND (Step 3) to determine whether P is initiating a new epoch when sending
a message and, if so, the (in)security of the new epoch. When discussing the
DELIVER command below, we will explain the role the last element of P.T plays
in the logic of New(P, TURN,P.T) and further understand its role elsewhere in the
functionality.

Finally, as typical with encryption, in the real-world the length of the
encrypted message is often leaked by the ciphertext. Thus, the ideal functionality
leaks the length of sent messages to the ideal adversary.

DELIVER Command. This command allows the ideal adversary to instruct the
ideal functionality that a certain message, with unique message id mid, is no
longer in-transit, and must be delivered to the recipient immediately, whether or
not previously sent messages have already been delivered (thus transformation
T6(DR) cannot realize the ideal functionality). The ideal functionality restricts
the ideal adversary to delivering the message associated with this mid only once,
which reflects the forward security of the DR – once a message is delivered,
the recipient should no longer be able to decrypt it (in case she is leaked on
afterwards). This is done by removing the entry for mid from P.T when it is
delivered, so that subsequent deliveries cannot occur (Step 1).

As part of the delivery process (Step 2), the ideal functionality also checks if
TURN was set to P when this message was sent. If so, the message was indeed the
first of P’s newest epoch that is delivered to P̄ (out of possibly many messages
that can be the first delivered in the epoch). Thus, subsequently, it will next be
P̄’s turn to start a new epoch. So, if this is the case, then TURN is flipped to P̄.
Additionally, helper function Flip(P,P.T) flips the last entry of each message
from P to P̄ in P.T to ⊥. This is done so that subsequently, when P starts its
next sending epoch, New(P, TURN,P.T) will return 1: TURN will flip back to P once
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a message of P̄’s next sending epoch is delivered to P for the first time, and
there will be no element in P.T whose last entry is P. (Note: before P receives
a message for P̄’s next sending epoch, P’s sent messages will not start a new
epoch, as captured by New(P, TURN,P.T), since TURN will be set to P̄.)

We also note that since UC modelling typically allows the adversary to con-
trol the communication network [14] (and thus decide when ciphertexts should
be delivered), there are some useless protocols that may realize FDR and FTR.
We define useless protocols as those in which with any PPT environment and
adversary, parties do not generate output (i.e., not even a special reject symbol,
like ⊥, representing failed authentication) for at least one ciphertext delivery,
with non-negligible probability. However, we can trivially rule out such useless
protocols, so that all protocols that do realize FDR or FTR and that are not
useless indeed generate the correct output immediately upon every delivery of a
ciphertext from the adversary, with all-but-negligible probability.

2.2 Execution with an Unrestricted Adversary

In addition to delaying, reordering, and dropping messages, we assume that the
real-world adversary can: (i) provide bad randomness for both parties, (ii) leak
their secret states; possibly multiple times at various points in the execution, (iii)
tamper with in-transit messages between the parties, and (iv) attempt to inject
messages on behalf of both parties. Here, we explain how the ideal functionality
captures this behavior.

The Ideal Functionality’s Flags. The ideal functionality uses several binary flags
to properly capture adversarial behavior. The functionality initializes all of them
to 0. Binary flag P.BAD captures bad randomness for party P ∈ {P1,P2}. Nat-
urally, P.BAD is set to 0 or 1 when the ideal-world adversary issues a (sid,
cmdBAD RANDOMNESS,P, ρ) command to the ideal functionality, depend-
ing on the value of ρ. If P.BAD is set to 1 then P is provided with bad randomness
(by the adversary, c.f. Appendix G) when she tries to sample some (thus render-
ing transformation T5(DR) insecure). Otherwise, P samples fresh randomness.

The ideal functionality further utilizes the following binary flags for each
party P ∈ {P1,P2} to capture the rest of the possible adversarial behavior. We
first introduce their real-world semantic meaning here before explaining (i) their
evolution within the ideal functionality as a result of the ideal world adversary’s
behavior, then (ii) how they thus allow the ideal functionality to determine
security for the session.

– P.PLEK (Public Ratchet Secrets Leakage): If P.PLEK is set to 1 then P’s public
ratchet secrets are leaked to the real-world adversary. Otherwise, they should
be hidden from the real-world adversary.

– P.CUR SLEK (Current Sending Symmetric Ratchet Secrets Leakage): If
P.CUR SLEK is set to 1 then the symmetric ratchet secrets of P’s current send-
ing epoch are leaked to the real-world adversary. Otherwise, they should be
hidden from the real-world adversary
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– P.PREV SLEK (Previous Sending Symmetric Ratchet Secrets Leakage): If
P.PREV SLEK is set to 1 then the symmetric ratchet secrets of the previous
sending epoch of P are leaked to the real-world adversary. Otherwise, they
should be hidden from the real-world adversary.

– P.TAKEOVER POSS (Takeover Possible): If P.TAKEOVER POSS is set to 1 then
the real-world adversary has the option to take over the role of P in the
conversation with P̄. Otherwise, the real-world adversary should not have
this option.

How the Flags are Affected by Leakages. We first describe how a leakage on
one of the parties P ∈ {P1,P2} affects the above flags. For P.PLEK, when
New(P, TURN,P.T) = 1, it is P’s turn to start her next sending epoch, but she
has not yet started it. Thus she does not currently have any public ratchet
secret state (just P̄’s public value), so there is no effect on P.PLEK if leakage on
P occurs in this case. If New(P, TURN,P.T) = 0 when leakage on P occurs, P of
course does have a public ratchet secret state, as she needs to be able to receive
a message for P̄’s next sending turn; thus in command LEAK, the ideal function-
ality sets P.PLEK to 1 (Step 1). Since P never stores P̄’s public ratchet secrets,
there is never any effect on P̄.PLEK when P’s state is leaked.

For P.CUR SLEK, the functionality has similar behavior. If New(P, TURN,P.T) =
1 when leakage on P occurs, P has not yet generated the secrets for her next send-
ing epoch, so P.CUR SLEK is not modified. Otherwise, P has started the epoch,
and so she stores the corresponding secrets in order to send new messages for
the epoch; thus in command LEAK, we set P.CUR SLEK to 1 (Step 1). Addition-
ally, if New(P̄, TURN, P̄.T) = 1 then P̄ has not yet generated the secrets for her
next sending epoch, so P̄.CUR SLEK is not modified. Otherwise, P̄ has indeed
started the epoch, in which case P must be able to derive the epoch’s symmetric
secrets (possibly using in-transit messages, which the adversary has), and thus
in command LEAK we set P̄.CUR SLEK to 1 (Step 2).

For P.PREV SLEK, since in the most secure version of the DR, P only ever
stores the secrets for her current sending epoch (if she has indeed started it),
leakage on P has no effect on P.PREV SLEK. However, once it is P̄’s turn to start
a new sending epoch, P still stores the secrets of P̄’s previous sending epoch (in
case she needs to receive messages for it; she does not yet know P̄ will never
again send a message for that epoch), until she receives a message in P̄’s new
epoch for the first time. Therefore, if TURN = P̄ then in command LEAK, we set
P̄.PREV SLEK to 1 (Step 3); otherwise, if TURN = P, P̄.PREV SLEK is not modified.

Finally, for P.TAKEOVER POSS, if it is P’s turn to start a new sending epoch,
then of course a leakage on P will enable the adversary to forge the first message
of this new epoch and thus influence the subsequent state of P̄ upon delivery
such that the adversary can take over P’s role in the conversation (if it wishes).
This is because the adversary will obtain the double ratchet root key, and can
thus send such a message herself. Also, note that this key is derived from (i)
P’s previous state before she received any message for P̄’s newest epoch and
(ii) any message of P̄’s newest sending epoch. Thus, additionally, if P is leaked
while any message from P̄’s newest epoch is in-transit, but before P receives any
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such message, then the adversary can obtain the root key as above, and so will
have the ability to forge the first message of P’s next sending epoch. Therefore, in
command LEAK, if New(P, TURN,P.T) = 1, or New(P̄, TURN, P̄.T) = 0 and TURN = P̄,
then we set P.TAKEOVER POSS to 1 (Step 4). Otherwise, if P has already sent the
first message of the epoch, and P̄ has not yet started her next sending epoch,
leakage on P does not reveal the root key, so P.TAKEOVER POSS is not modified. In
the former case, this is because P deletes the key after sending the message, and
in the latter case, this is because the key does not yet exist. Furthermore, if P
has indeed sent a message for her current sending epoch, then a leakage on P will
provide the adversary with the new root key. The adversary will therefore be able
to forge the first message for P̄’s next sending epoch. So, if New(P, TURN,P.T) = 0
then in command LEAK, we additionally set P̄.TAKEOVER POSS to 1 (Step 1).
Otherwise, if it is P’s turn to start a new epoch, and she has not yet started it,
then the new root key has not yet been generated, so P̄.TAKEOVER POSS is not
modified.

How the Flags are Affected by Epoch Initialization. The effects on the ideal
functionality’s flags of epoch initialization via a SEND command are determined
in Step 3 of the command. First, if P.BAD = 1 when starting a new epoch (i.e. P
uses bad randomness to start it), then we of course set P.PLEK to 1 (In the TR
we may still here have security of P’s public ratchet secret state, but we choose
to capture slightly weaker security for simplicity); otherwise we set P.PLEK to
0. Now, consider the privacy of the root key when P̄.CUR SLEK is 1 and P is
initializing a new epoch:

– If P̄.CUR SLEK was set to 1 when P̄ initialized her newest epoch (as we explain
below), then the root key must have been leaked in addition to the corre-
sponding symmetric ratchet secrets, since they are both part of the same
KDF output.

– If P̄.CUR SLEK was set to 1 as a result of a leakage on P, then the root key
must have been also leaked, since P needs it to start her new sending epoch.

– Finally, if P̄.CUR SLEK was set to 1 as a result of a leakage on P̄, then the root
key must have been also leaked, since P̄ needs it to receive a message for P’s
new sending epoch.

So, if P̄.CUR SLEK is 1 when P initializes her new sending epoch, then it must be
that the root key is leaked. Thus, only if P and P̄ have a secure key exchange can
security for the DR be recovered, which only happens if both P.PLEK and P̄.PLEK
are 0, i.e., their public ratchet secrets are both hidden from the adversary. In this
case, we set P.CUR SLEK to 0; otherwise, we set it to 1. If P̄.CUR SLEK is 0 at the
time of initialization, then the root key must be hidden. This is because if not,
then the current symmetric ratchet secrets of P̄ would also not be hidden, since
they were part of the same KDF output when P̄ started her latest sending epoch,
and there were no subsequent leakages on either party. So we set P.CUR SLEK to
0 upon initialization, in this case.

Finally, if we do indeed set P.CUR SLEK to 1 at this time, as we noted
above, this means that the new root key is known by the adversary, and thus



802 A. Bienstock et al.

the adversary could forge the first message for P̄’s next turn; otherwise the
root key is hidden, and so the adversary does not have this ability. So, we set
P̄.TAKEOVER POSS ← P.CUR SLEK.

How the Flags are Affected by Epoch Termination. When the ideal adversary
issues a DELIVER command for the first message of P’s newest sending epoch, the
ideal functionality needs to properly evolve the flags it uses to capture adversarial
behavior (Step 2). First, when such a delivery occurs, P̄’s latest sending epoch
terminates, as her next message will be sent in a new epoch. To reflect this, upon
such a delivery, the ideal functionality sets P̄.PREV SLEK ← P̄.CUR SLEK. Also,
since P̄ deletes her public ratchet secrets upon reception of such a message, and
her newest epoch has not actually started at this point, the functionality sets
P̄.CUR SLEK ← 0 and P̄.PLEK ← 0.

Furthermore, in the DR, P includes in each message of an epoch the number
of messages she sent in her previous epoch (see Appendix C). Thus, once P̄
receives such a message in the DR, she knows exactly how many messages P
sent in her previous epoch. So, the adversary can no longer inject messages in
P’s previous epoch (just modify them) and there is no more adversarial action
possible for that epoch, so the functionality sets P.PREV SLEK ← 0. Finally, since
a message for P’s newest sending epoch has indeed been delivered at this point,
the secrets needed to start her next sending epoch are yet to be determined.
Thus, the adversary cannot yet forge a message to start her next sending epoch,
so the functionality sets P.TAKEOVER POSS ← 0.

Determining New Messages’ Privacy and Authenticity. We know from above
that if P.CUR SLEK = 1, then P’s current symmetric ratchet secrets are leaked
to the adversary. Thus, if P issues a SEND command for message m with id
mid, and P.CUR SLEK = 1, then the ideal functionality leaks the corresponding
message to the ideal adversary (Step 4). Additionally, the ideal functionality
sets the penultimate element of mid’s entry in P.T to 1. This will allow the
ideal adversary to modify the message associated with mid upon delivery: the
adversary will issue a DELIVER command for mid to the functionality with input
modified message m′, which will then be delivered P̄, instead of m (Step 3).

Otherwise, if P.CUR SLEK = 0 when P issues the SEND command, then the
ideal functionality only leaks the message length to the adversary and sets the
penultimate element of the corresponding entry of P.T to 0, ensuring (for now)
privacy and authenticity of m.

The Consequences of Leakages. When the adversary leaks on P in the real-world,
the privacy of in-transit messages from P̄ to P is no longer guaranteed, since P
must preserve all keys that will be necessary for authenticating and decrypting
them. Therefore, when the ideal adversary issues a LEAK command on P, the
ideal functionality leaks the in-transit messages from P̄ to P, P.T, to the ideal
adversary, and allows the ideal adversary to modify them in the future (Step 5).
The ideal functionality accomplishes the latter using helper function Unsafe(P̄.T)
which sets the penultimate element of each in-transit message of P̄.T to 1. As a
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result, the ideal adversary can modify these in-transit messages in the DELIVER
command, as described above. Note that only in-transit messages from P̄ to P
are affected (thus rendering transformation T2(DR) insecure).

Vulnerable Messages in the DR. As explained in Sect. 1.4, if in the DR, the root
key is leaked when it is P’s turn to start a new sending epoch, but P has not yet
started it, then the messages of that epoch are vulnerable. This means that if P
is leaked on before P receives a message of P̄’s next sending epoch for the first
time, the messages that P sent in her own epoch become insecure.

To capture this, the ideal functionality in the SEND command adds messages
to list P.V if they are indeed vulnerable (Step 2). At the start of the epoch, this is
the case if P̄.CUR SLEK = 1 (as explained above); in the middle of the epoch, this
is the case if P.V is non-empty. Hence, if the adversary issues a LEAK command on
P, in addition to the consequences of the above paragraph, the ideal functionality
also leaks P.V and allows for future modification of its elements that are still in-
transit (Step 5). The latter is accomplished via helper function Unsafe′(P.T,P.V),
similarly as in Unsafe(P̄.T). Note that this scenario, and the one above, are the
only ones in which secure, in-transit messages are leaked to the adversary and/or
subject to modification (thus transformation T4(DR) is insecure). Finally, if the
adversary issues a DELIVER command for the first message of P̄’s next sending
epoch, the ideal functionality sets P.V = ∅: P properly deletes the secrets which
make those messages vulnerable at this time.

Injections and Takeovers. If P.CUR SLEK = 1 or P.PREV SLEK = 1, then the
adversary has the secrets required to inject its own messages into P’s current
or previous sending epoch, respectively. Also, if P.TAKEOVER POSS = 1, then the
adversary can forge the first message to be delivered in P’s next sending epoch
to P̄. In either case, the ideal adversary issues the INJECT command to inject
message m under unique message id mid on behalf of P. Of course, the ideal
functionality only allows the adversary to inject one message under each such
mid, which it ensures by aborting in Step 1 if mid is already in P.I, and adding
it to P.I in Step 3 if not. The ideal functionality also aborts if a message with
message id mid was already sent by P, i.e., it is in P.M, in which case injection
of mid is not allowed, only modification. If the ideal adversary injects a message
with id mid that is not a takeover forgery, then before actual delivery of the
injection occurs, a corresponding entry is added to P.T.

Now, if P.TAKEOVER POSS = 1, and the ideal adversary inputs δ = 1 to the
INJECT command, indicating that it wishes to takeover for P, then the ideal func-
tionality thereafter directly forwards messages sent from P to the ideal adversary,
and vice versa (Step 2).

If the ideal adversary injects a message with id mid that is not a takeover
forgery, then before actual delivery of the injection occurs, a corresponding entry
is added to P.T. However, the ideal functionality has to be careful to set the last
element of this entry correctly:

– If TURN = P̄, then the first message of P’s current sending epoch has already
been delivered to P̄. Thus, the last element of the entry is set to ⊥, so that
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if TURN is flipped to P, the entry’s subsequent delivery does not prematurely
flip TURN back. Moreover, if P.CUR SLEK = 0, then the adversary must be
injecting into P’s previous sending epoch, so for the same reason as above,
we set its last entry to ⊥.

– If P.PREV SLEK = 0 and TURN = P, then the adversary must be injecting
into P’s current sending epoch, and moreover, it might be that the injected
message could be the first of the epoch delivered to P̄. Therefore, we set TURN
to P.

– If neither of the above are true, i.e., TURN = P, P.PREV SLEK = 1, and
P.CUR SLEK = 1, then it could be that the adversary is injecting into either
P’s previous or current sending epoch. Therefore, the ideal adversary specifies
its choice of the last element with the last input γ to the INJECT command.

Actual delivery of injections is then handled in the DELIVER command, in
the same simple manner as specified in the Honest Execution Section (Sect. 2.1).
Namely, delivery of injected message with message id mid is done by removing it
from P.T (if such an entry exists), and sending it to P̄. The functionality works
this way in order to capture the scenario in which the real-world adversary
modifies the first message of a new sending epoch for P to inform P̄ that P’s
last sending epoch contains more messages than it actually does. Therefore, the
real-world adversary will be able to in the future inject such additional messages
whenever it wants. The ideal-world adversary thus issues an INJECT command
for all of these message ids at the time of the first modification, so that later it
can actually send them to P̄ using DELIVER commands (regardless of the status
of the functionality’s flags at that time).

If an injected message with id mid is indeed added to P.T, then the ideal
functionality needs to also make sure that P can send a message with the same
mid (since it does not know about the injection), but not allow the ideal adversary
to deliver two messages with the same mid (since P̄ will only accept one such
message in the DR). Therefore, in the SEND command, the ideal functionality
checks if mid /∈ P.I and if so adds the corresponding message to P.T as in the
honest execution. However, if mid is in P.I, the ideal functionality does not add
the corresponding message to P.T, but still sends the length of the message (and
the message itself if P.CUR SLEK = 1) to the ideal adversary, mirroring that a
ciphertext is still created in the real-world.

3 Continuous Key Agreement

In this section we formalize the main constructive contribution of our paper: the
stronger, but virtually as efficient, public ratchet (and its mini ratchet) used by
the Triple Ratchet protocol. More specifically, we first define (a version of) the
continuous key agreement (CKA) primitive, introduced by ACD, which provides
secrets for updates of the public ratchet. We provide two notions of security, that
which is used by the DR and that which is used by the (stronger) TR. We also
compare our definition to that of ACD. Then, we provide our CKA construction
CKA+ used in the TR and show it is secure according to the stronger definition,
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via the strong-DH (StDH) assumption [1] in the random oracle model.1 The
StDH assumption is: given random and independent group elements ga, gb, and
access to oracle ddh(ga, ·, ·), which on input X,Y returns 1 if Xa = Y and 0
otherwise, it is hard to compute gab.

Defining CKA. At a high level, CKA is a synchronous two-party protocol
between P1 and P2. Odd rounds i consist of P1 sending and P2 receiving a
message Ti, whereas in even rounds, P2 is the sender and P1 the receiver. Each
round i also produces a key Ii, which is output by the sender upon sending Ti

and by the receiver upon receiving Ti.

Definition 1. A continuous-key-agreement (CKA) scheme is a quadruple of
algorithms CKA = (CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R), where

– CKA-Init-P1 (and similarly CKA-Init-P2) takes a key k and produces an initial
state γP1 ← CKA-Init-P1(k) (and γP2),

– CKA-S takes a state γ, and produces a new state, message, and key (γ′, T, I) $←
CKA-S(γ), and

– CKA-R takes a state γ and message T and produces new state and a key
(γ′, I) ← CKA-R(γ, T).

Denote by K the space of initialization keys k and by I the space of CKA keys
I.

Correctness. A CKA scheme is correct if in the security game in Fig. 3 (explained
below), P1 and P2 always, i.e., with probability 1, output the same key in every
round.

Security. The security property we will require a CKA scheme to satisfy is that
conditioned on the transcript T1, T2, . . ., the keys I1, I2, . . . are unrecoverable. An
attacker against a CKA scheme is required to be passive, i.e., may not modify the
messages Ti. However, it is given the power to possibly (1) control the random
coins used by the sender and (2) leak the current state of either party. Given
the capabilities of the adversary, it is easy to see that some keys Ii would be
recoverable. The security guarantee offered by the CKA scheme would then
be that even given the transcript T1, T2, . . ., assuming certain “fine-grained”
conditions around when the adversary controls the randomness used by parties
and when the adversary learns the state of parties, most keys I1, I2, . . . are
unrecoverable. It will also be the case that parties thus recover from such bad
randomness and leakage issued by the adversary.

The formal security game for CKA is provided in Fig. 3. It begins with a
call to the init oracle, which initializes the states of both parties, and defines
1 We do not provide CKA schemes secure according to our definitions based on LWE

or generic KEMs, as in ACD. However, we note that our stronger scheme CKA+

is intuitively at least as strong as their construction from generic KEMs, but more
efficient.
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Fig. 3. Oracles corresponding to party P1 of the CKA security game for a scheme
CKA = (CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R); the oracles for P2 are defined
analogously. Conditions for the weaker security game, i.e., ε-security, are pre-
sented to the left of those for the stronger game, i.e., (ε,+)-security.

epoch counters tP1 and tP2 . Procedure init takes a value t∗, which determines
in which round the challenge oracle may be called; the task of the adversary will
be to recover the key It∗ for that round.

Upon completion of the initialization procedure, the attacker gets to interact
arbitrarily with the remaining oracles, as long as the calls are in a “ping-pong”
order, i.e., a call to a send oracle for P1 is followed by a receive call for P2, then
by a send oracle for P2, etc. The attacker only gets to use the challenge oracle for
epoch t∗. The attacker additionally has the capability of testing the consistency
of Tt and It (i.e., whether the receiver in epoch t would produce key It on input
message Tt).

The security game of ACD is parametrized by ΔCKA, which stands for the
number of epochs that need to pass after t∗ until the states do not contain secret
information pertaining to the challenge. Once a party reaches epoch t∗+ΔCKA, its
state may be revealed to the attacker (via the corresponding corruption oracle).
We avoid this and define two levels of security, the former weaker than the
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latter. At the bottom of Fig. 3, the conditions allow-corrP and allow-bad-randP
for the weaker version are presented to the left of those of the stronger version.
We define two levels of security in order to capture a stronger, more fine-grained
security guarantee for CKA which will be useful in providing stronger security
guarantees for the DR and TR as a whole when one considers the composition of
all its building blocks, CKA being one of them. In the former, bad randomness
is not allowed in the epochs t∗ and t∗ −1, and corruptions are not allowed in the
epoch t∗ after invoking CKA-S (for the sender of epoch t∗) and before invoking
CKA-R (for the receiver of epoch t∗). In the latter, which is used by the TR, bad
randomness is not allowed in the epochs t∗ and t∗ − 1, and corruption of the
receiver of epoch t∗ is not allowed before invoking CKA-R (for epoch t∗). There
is no other difference between the two notions.

The game ends (not made explicit) once both states are revealed after the
challenge phase. The attacker wins the game if it eventually outputs the cor-
rect secret key It∗ corresponding to the challenge message Tt∗ . The advantage
of an attacker A against a CKA scheme CKA is denoted by AdvCKA(A) and
AdvCKA

+
(A) for the weaker and stronger security guarantees, respectively. The

attacker is parameterized by its running time t.

Definition 2. A CKA scheme CKA is (t, ε)-secure (resp. (t, ε,+)-secure) if for
all t-attackers A,

AdvCKA(A) ≤ ε (resp. AdvCKA
+
(A) ≤ ε).

Definition 3. A CKA scheme CKA is simply called ε-secure (resp. (ε,+)-
secure) if for every t ∈ poly(κ) and ε ∈ negl(κ), where κ is the security param-
eter,

AdvCKA(A) ≤ ε (resp. AdvCKA
+
(A) ≤ ε).

Observe that since the TR uses a CKA with the latter, stronger security, the
attack of Sect. 1.4 is thwarted. This is because even if the epoch t∗ sender is
corrupted after invoking CKA-S, It∗ should remain hidden.

Remark 1. Many natural CKA schemes satisfy an additional property that given
a CKA message T and key I for a given round, it is possible to deterministically
compute the corresponding state of the receiving party after her execution of
CKA-R in that round. We model this explicitly by requiring a deterministic
algorithm CKA-Der-R that takes a message T and key I and produces the correct
state γ′ ← CKA-Der-R(T, I). All CKA schemes in this work are required to be
natural.

Differences from ACD

Fine-Grained Security Guarantees. Recall the “CKA from DDH” scheme from
ACD (which is the public ratchet used in the DR and which we prove security
for in Appendix B.3), CKA = (CKA-Init-P1,CKA-Init-P2,CKA-S,CKA-R), that is
instantiated in a cyclic group G = 〈g〉 as follows:
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– The initial shared state k = (h, x0) consists of a (random) group element
h = gx0 and its discrete logarithm x0. The initialization for P1 outputs h ←
CKA-Init-P1(k) and that for P2 outputs x0 ← CKA-Init-P2(k).

– The send algorithm CKA-S takes as input the current state γ = h and proceeds
as follows: It
1. chooses a random exponent x;
2. computes the corresponding key I ← hx;
3. sets the CKA message to T ← gx;
4. sets the new state to γ ← x; and
5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = x as well
as a message T = h and proceeds as follows: It
1. computes the key I = hx;
2. sets the new state to γ ← h; and
3. returns (γ, I).

Now, let x0 be the random exponent that is part of the initial shared state,
and for i > 0, let xi be the random exponent picked by CKA-S (which was run
by P1 for odd i, and P2 for even i) in round i. Then, we have the following:

– The key for round i is Ii = gxi−1xi .
– The message for round i is Ti = gxi .
– If i is odd, and P1 has yet to invoke CKA-S, γP1 = gxi−1 and γP2 = xi−1.
– If i is odd, and P1 has invoked CKA-S, but P2 has yet to invoke CKA-R,

γP1 = xi and γP2 = xi−1.
– If i is odd, and P1 has invoked CKA-S, and P2 has invoked CKA-R, γP1 = xi

and γP2 = gxi .
– If i is even, and P2 has yet to invoke CKA-S, γP1 = xi−1 and γP2 = gxi−1 .
– If i is even, and P2 has invoked CKA-S, but P1 has yet to invoke CKA-R,

γP1 = xi−1 and γP2 = xi.
– If i is even, and P2 has invoked CKA-S, and P1 has invoked CKA-R, γP1 = gxi

and γP2 = xi.

Based on the above, we make the following observations:

– If i is odd and P1 is corrupted after invoking CKA-S, the adversary learns
γP1 = xi and since it also has access to gxj for all j ≥ 1, the adversary learns
Ii and Ii+1.

– If i is even and P1 is corrupted after invoking CKA-R, and P2 used good
randomness in picking xi while invoking CKA-S in round i, the adversary
learns γP1 = gxi , but since it only (assuming no other corruptions) has access
to gxj for all j ≥ 1, the adversary does not learn Ii (if P1 also used good
randomness in picking xi−1 while invoking CKA-S in round i − 1) or Ii+1 (if
P1 also uses good randomness in picking xi+1 while invoking CKA-S in round
i + 1).

Thus, the CKA keys for two rounds are compromised only in the case where
the party that has last sent a message is corrupted, and not if the party has last
received a message. This allows us to consider a more fine-grained version of the
CKA security game than the one described in ACD.
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Non-malleability. Consider the following scenario in the DR or TR: It is P1’s turn
to start a new sending epoch, but she has not yet. Then her state is leaked, and
afterwards, she sends the first message m1 of the epoch with good randomness.
Then, if P2 started her last epoch with good randomness, and there are no other
leakages, m1 is required to remain private by FDR and FTR, respectively. How-
ever, all authenticity for m1 is lost—the adversary leaked on P1 beforehand and
thus could have generated the message herself. Therefore, we replace the indis-
tinguishability definition of ACD with our recoverability definition and require
non-malleability of CKA messages via the test oracle—the adversary should not
be able to maul them in order to learn about the actual session messages sent
in the DR or TR. Note that this modification makes our CKA definition incom-
parable in strength to that of ACD, but allows us to prove stronger security for
the DR. See the full security proof of Theorem 5 for the DR and TR, as well as
Appendix D.2, for more details.

Instantiating CKA+. A CKA scheme CKA+ = (CKA-Init-P1,CKA-Init-P2,
CKA-S,CKA-R) (which may be used in the TR) can be obtained assuming ran-
dom oracles or circular-secure ElGamal in a cyclic group G = 〈g〉 (with exponent
space X ) using a function H : I → X as follows:

– The initial shared state k = (h, x0) consists of a (random) group element
h = gx0 and its discrete logarithm x0. The initialization for P1 outputs h ←
CKA-Init-P1(k) and that for P2 outputs x0 ← CKA-Init-P2(k).

– The send algorithm CKA-S takes as input the current state γ = h and proceeds
as follows: It
1. chooses a random exponent x;
2. computes the corresponding key I ← hx;
3. sets the CKA message to T ← gx;
4. sets the new state to γ ← x · H(I); and
5. returns (γ, T, I).

– The receive algorithm CKA-R takes as input the current state γ = x as well
as a message T = h and proceeds as follows: It
1. computes the key I = hx;
2. sets the new state to γ ← hH(I); and
3. returns (γ, I).

Note that the above scheme is natural, i.e., it supports a CKA-Der-R algorithm,
namely, CKA-Der-R(T, I) = TH(I). Now we show its security in the theorem
below. (We give informal details on additional security properties that we con-
jecture it to have in Appendix B.3)

Theorem 1. Assume group G is (t, ε)-StDH-secure. Additionally, assume the
existence of a random oracle H. Then, the above CKA scheme CKA is (t′, ε,+)-
secure for t ≈ t′.

Proof. Assume w.l.o.g. that t∗ is odd, i.e., P1 sends the challenge; the case where
t∗ is even is handled analogously. Let ga, gb be a StDH challenge. The reduc-
tion simulates the CKA protocol in the straight-forward way but embeds the
challenge into the CKA as follows:
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– in epoch t∗ − 1, it uses Tt∗−1 = ga and It∗−1 = gxaH(It∗−2), where x is the
exponent used to simulate Tt∗−2 = gx.

– in epoch t∗, it uses Tt∗ = gb and It∗ = gabH(It∗−1) which is the key the
adversary is to recover, as well as sets γP1

t∗ ← y, for random y in X ;
– in epoch t∗ + 1, for exponent x′ (possibly generated using adversarial ran-

domness), it uses Tt∗+1 = gx
′
and It∗+1 = gyx

′
.

It is easy to verify that this correctly simulates the CKA experiment since H is a
random oracle. In particular, randomly sampled y properly simulates b · H(It∗):
If A does not query the random oracle on It∗ then y is properly distributed.
Moreover, when A makes a random oracle query for any I, the reduction can
query oracle ddh(ga, ·, ·) on (gbH(It∗−1), I) so that if indeed I = It∗ , the reduction
will know, and then forward to its challenger gab = I

1/H(It∗−1)
t∗ before answering

the CKA+ attacker’s query.
Similarly, the test oracle can be perfectly simulated with the help of

ddh(): if test(t∗, T, I) is queried, the reduction simply queries ddh(ga, ·, ·) on
(TH(It∗−1), I); all other test() queries can be directly simulated. �
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